
Collaboration Using OSSmole:
a repository of FLOSS data and analyses

Megan Conklin
Elon University

Department of Computing Sciences
Elon, NC 27244
1(336)229-4362

mconklin@elon.edu

James Howison
Syracuse University

School of Information Studies
Syracuse, NY 13210

1(315)395-4056

jhowison@syr.edu

Kevin Crowston
Syracuse University

School of Information Studies
Syracuse, NY 13210

1(315)380-3923

crowston@syr.edu
ABSTRACT
This paper introduces a collaborative project OSSmole which
collects, shares, and stores comparable data and analyses of free,
libre and open source software (FLOSS) development for
research purposes. The project is a clearinghouse for data from
the ongoing collection and analysis efforts of many disparate
research groups. A collaborative data repository reduces
duplication and promote compatibility both across sources of
FLOSS data and across research groups and analyses. The
primary objective of OSSmole is to mine FLOSS source code
repositories and provide the resulting data and summary analyses
as open source products. However, the OSSmole data model
additionally supports donated raw and summary data from a
variety of open source researchers and other software
repositories. The paper first outlines current difficulties with the
typical quantitative FLOSS research process and uses these to
develop requirements for such a collaborative data repository.
Finally, the design of the OSSmole system is presented, as well
as examples of current research and analyses using OSSmole.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics – complexity measures,
process metrics, product metrics.

General Terms
Measurement, Human Factors.

Keywords
Open source software, free software, libre software, data mining,
data analysis, data repository, source control, defect tracking,
project metrics.

1. INTRODUCTION
OSSmole is a collaborative project designed to gather, share and
store comparable data and analyses of free and open source
software development for academic research. The project draws
on the ongoing collection and analysis efforts of many research
groups, reducing duplication, and promoting compatibility both
across sources of online FLOSS data and across research groups
and analyses.

Creating a collaborative repository for FLOSS data is important
because research should be as reproducible, extensible, and
comparable as possible. Research with these characteristics
creates the opportunity to employ meta-analyses ("analyses of
analyses") which exploit the diversity of existing research by
comparing and contrasting existing results to expand knowledge.
Unfortunately, the typical FLOSS research project usually
proceeds in a way that does not necessarily achieve these goals.
Reproducing, extending, and comparing research project results
requires detailed communal knowledge of the many choices
made throughout a given research project. Traditional publication
methods prioritize results but mask or discard much of the
information needed to understand and exploit the differences in
the data collection and analysis methodologies of different
research groups. OSSmole is designed to provide resources and
support to academics seeking to prepare the next generation of
FLOSS research.

2. BACKGROUND AND METHOD
Obtaining data on FLOSS projects is both easy and difficult. It is
easy because FLOSS development utilizes computer-mediated
communications heavily for both development team interactions
and for storing artifacts such as code and documentation. As
many authors have pointed out, this process leaves a freely
available and, in theory at least, highly accessible trail of data
upon which many academics have built interesting analyses. Yet,
despite this presumed plethora of data, researchers often face
significant practical challenges in using this data in a deliberative
research discourse.

2.1. Data Selection
The first step in collecting online FLOSS data is selecting which
projects and which attributes to study. Two techniques often used
in estimation and selection are census and sampling. (Case
studies are also used but these will not be discussed in this
paper.)

Conducting a census means to examine all cases of a phenomena,
taking the measures of interest to build up an entire accurate
picture. Taking a census is difficult in FLOSS for a number of
reasons. First, it is hard to know how many FLOSS projects there
are ‘out there’ and hard to know which projects are actually in or
out. For example, are corporate-sponsored projects part of the
phenomenon or not? Do single person projects count? What
about school projects?

Second, projects, and the records they leave, are scattered across
a surprisingly large number of locations. It is true that many are
located in the major general repositories, such as Sourceforge and
GNU Savannah. It is also true, however, that there are a quickly
growing number of other repositories of varying sizes and
focuses (e.g. CodeHaus, GridForge, CPAN (the perl

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
International Conference on Software Engineering Workshop on Mining
Software Repositories ’05, May 17, 2005, St. Louis, Missouri, USA.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

repository) ...) and that many projects, including the well-known
and well-studied Apache and Linux projects, prefer to "roll their
own" tools. This locational diversity obscures many FLOSS
projects from attempts at census. Even if a full listing of projects
and their locations could be collated, there is also the practical
difficulty of dealing with the huge amount of data—sometimes
years and years of email conversations, source control data, and
defect tracking data—required to conduct comprehensive
analyses.

These difficulties suggest sampling, or the random selection of a
small, and thus manageable, sub-group of projects which is then
analyzed to represent the whole. While sampling could solve the
manageability problem presented in census-taking, there is still
another difficulty with both processes: the total population from
which to take the sample selection is not well-defined. Perhaps
more importantly, sampling open source projects is
methodologically difficult because everything FLOSS research
has shown so far points to massively skewed distributions across
almost all points of research interest [1] [8]. Selecting at random
from these highly skewed datasets will yield samples which will
be heavily weighted to single-developer projects, or projects
which are still in listings but which are stillborn, dormant, or
dead. These are often not the most interesting research subjects.

The large skew also makes reporting distributions of results at
best difficult and at worst misleading because averages and
medians are not descriptive of the distribution. The difficulty of
sampling is demonstrated in the tendency of FLOSS studies to
firstly limit their inquiries to projects using one repository
(usually Sourceforge), and often to draw on samples created for
entirely different purposes (such as top-100 lists as in [6]),
neither of which is a satisfactory general technique.

2.2. Data Collection
Once the projects of interest have been located, the actual project
data must be collected. There are two techniques that prevail in
the FLOSS literature for collecting data: web spidering and
obtaining database dumps.

Spidering data is fraught with practical complexities [5]. Because
the FLOSS repositories are usually maintained using a database
back-end and a web front-end, the data model appears
straightforward to reproduce. The central limitation of spidering,
however, is that the researcher is continually in a state of
discovery. The data model is always open to being changed by
whoever is controlling the repository and there is usually no way
that the researcher will know of changes in advance. Spidering is
a time- and resource-consuming process, and one that is being
unnecessarily replicated throughout the world of FLOSS
research.

Getting direct access to the database is clearly preferable, but not
all repositories make their dumps available. And understandably
so: it is not a costless process to make data-dumps available.
Dumps can contain personally identifiable and/or financial
information (as with the Sourceforge linked donation system)
and so must be anonymized or otherwise treated. Repositories are
facing an increasing number of requests for database snapshots
from academics and are either seeking a scalable way to do
releases or declining to release the data1. It is often unclear

1
It is understood that an NSF funded project on which the Sourceforge

project manager is a co-PI is planning to make Sourceforge dumps generally
available, but the details of this project are, at the time of writing, not available.
See http://www.nd.edu/~oss/People/people.html

whether database dumps obtained by one research project can be
shared with other academics, so rather than possibly breach
confidentiality or annoy their subjects by asking for signed
releases, it is understandable that academics who do get a
database dump do not make those dumps easily available.

Even when a dump is made available, it is necessary to interpret
the database schema and identify missing data elements. This is
not always as straightforward as one would expect. After all, the
databases were designed to be used to build Web pages quickly,
not to conduct academic analyses. Furthermore, they have been
built over time and face the complexity that any schema faces
when stretched and scaled beyond its original intended use:
labels are obscured, extra tables are used, there are
inconsistencies between old and recently-added data. The
interpretation and transformation of this data into information
that is interesting to researchers is not a trivial process, and there
is no reason to think that researchers will make these
transformations in a consistent fashion. It is also possible that
some repositories do not themselves store the type of historical
information about projects that would be interesting for academic
research. For example, while a snapshot of a repository might
show the current list of developers each project, it could be
missing important historical information about which developers
have worked on which projects in the past.

Even pristine and well-labeled data from repositories is not
sufficient because different repositories store different data
elements. Different forges can have projects with the same
names; different developers can have the same name across
multiple forges; the same developer can go by multiple names in
multiple forges. In addition, forges have different terminology for
things like developer roles, project topics, and even programming
languages. The differences are compounded by fields which are
named the same but which represent different data. This is
especially true of calculated fields, such as activity or downloads,
for which there is incomplete publicly-available information how
these fields are calculated.

2.3. Data Validation
Once projects have been selected and the available data
harvested, researchers must be confident that the data adequately
represents the activities of a project. For example, projects may
use the given repository tools to differing degrees: many projects
are listed on Sourceforge, and use the mailing lists and web
hosting provided there. But some of these same projects will
shun the notoriously quirky Tracker bug-tracking system at
Sourceforge, preferring to set up their own systems. Other
projects host their activities outside Sourceforge but maintain a
‘placeholder’ registration there. These projects will often have
very out-of-date registration information, followed by a link to an
external Web site. It is very difficult, without doing detailed
manual examination of each project, to know exactly how each
project is using its repository tools. It is thus difficult to be
confident that the data collected is a reasonable depiction of the
project’s activities.

Complete accuracy is, of course, not always required because in
large scale data analysis some 'dirty' data is acceptably handled
through statistical techniques. At a minimum, though, researchers
contemplating the accuracy of their data must have some reason
to believe that there are no systematic reasons that the data
collected in the name of the group would be unrepresentative.
Unfortunately, given the idiosyncrasies of FLOSS projects,
confidence on this point appears to require project-by-project

verification, a time-consuming process for individual researchers
and projects, and one which is presumably repeated by every
researcher going through this information-gathering exercise.

The upshot of this issue is that each step of the typical FLOSS
research process introduces variability into the data. This
variability then underlies any quantitative analysis of FLOSS
development. Decisions about project selection, collection, and
cleaning are compounded throughout the cycle of research.
FLOSS researchers have not, so far, investigated the extent to
which this variability affects their findings and conclusions. The
demands of traditional publication also mean that the decisions
are not usually fully and reproducibly reported.

Our critique is not against the existence of differences in research
methods or even datasets. There is, rightly, more than one way to
conduct research, and indeed it is this richness that is at the heart
of knowledge discovery. Rather, our critique is that the research
community is currently unable to begin a meta-analysis phase
because the current process of FLOSS research is hampered by
variability, inconsistency, and redundant, wasted effort in data
collection and analysis. It is time to learn from the free and open
source approaches we are studying and develop an open,
collaborative solution.

3. PROPOSED SOLUTION
3.1. Goals of OSSmole
The above problem description allows us to identify
requirements for building a system to support research into
FLOSS projects. We call the system we have built OSSmole. The
OSSmole system is a central repository of data and analyses
about FLOSS projects which have been collected and prepared in
a decentralized, collaborative manner. Data repositories have
been useful in other fields, forming datasets and interchange
formats (cf ARFF) around which research communities focus
their efforts. For example, the TREC datasets have supported a
community of information retrieval specialists facilitating
performance and accuracy comparisons2. The GenBank is the
NIH database of all publicly-available gene sequences.3 The
PROMISE software engineering repository is a collection of data
for building predictive models of the software engineering
process.4 The goal of the OSSmole project is to provide a high-
quality, widely-used database of FLOSS project information, and
to share standard analyses for replication and extension of this
data.

A data and analysis clearinghouse for FLOSS data should be:

Collaborative—The system should leverage the collective effort
of FLOSS researchers. It should reduce redundancies in data
collection and free a researcher’s time to pursue novel analyses.
Thus, in a manner akin to the BSD rather than the GPL licensing
model, OSSmole expects but does not require that those that use
data contribute additional data and the analysis scripts that they
obtain or use.

Available—The system should make the data and analysis scripts
available without complicated usage agreements, where possible
through direct unmonitored download or database queries. This
ease the startup requirements for new researchers who wish to
implement novel techniques but face high data collection costs.

2 http://trec.nist.gov
3 http://www.ncbi.nlm.nih.gov/GenBank
4 http://promise.site.uottawa.ca/SERepository

This will also lower the barriers to collegial replication and
critique.

Comprehensive and compatible—Given the multiplicity of
FLOSS project forges identified above, the system should cover
more than just one repository. The system should also be able to
pull historical snapshots for purposes of replication or extension
of earlier analyses. Compatibility requires that the system should
translate across repositories, allowing researchers to conduct both
comprehensive and comparative analyses. There is also the
potential to develop a data interchange format for FLOSS project
collateral. FLOSS project leaders, fearing data and tool lock-in,
might find this format useful as they experiment with new tools
or and repositories.

Designed for academic research—The data model and access
control features should be designed for convenience for academic
researchers. This means a logical and systematic data model
which is properly documented with well-labeled fields. The
source of each data element should be known and transparent.
Researchers should be able to trace the source of each data
element so that they can make decisions about whether to include
a particular record or attribute in their analyses.

Of high quality—Researchers should be confident that the data in
the system is of high quality. The origins and collection
techniques for individual data elements must be traceable so that
errors can be identified and not repeated. Data validation
performed routinely by researchers can also be shared (for
example, scripts that sanity-check fields or distributions) and
analyses can be validated against earlier ones. This is a large
advantage over individual research projects which may be
working with single, non-validated datasets. It reflects the
“many-eyes” approach to quality assurance, familiar from
FLOSS development practices.

Support reproducible and comparable analyses—The system
should specify a standard application programming interface
(API) for inserting and accessing data via programmed scripts.
That allows analyses to specify, using the API, exactly the data
used. It is also desirable that data extracted from the database for
transformation be exported with verbose comments detailing its
origin and how to repeat the extraction. The best way to ensure
reproducible and comparable analyses is to have as much of the
process as possible be script-driven. Ideally, these scripts could
available for analysis by the research community.

A system that meets these requirements, we believe, will promote
the discovery of knowledge about FLOSS development by
facilitating the next phase of extension through replication,
apposite critique, and well-grounded comparisons.

3.2. OSSmole Data Model
The OSSmole data model is designed to support data collection,
storage and analysis from multiple open source forges in a way
that meets the above requirements. OSSmole is able to take both
spidered data and data inserted from a direct database dump. The
raw data is timestamped and stored in the database, without
overwriting any data previously collected about the same project.
Finally, periodic raw and summary reports are generated and
made publicly-available on the project web site.

The type of data that is currently collected from the various open
source forges includes: the full HTML source of the forge data
page for the project, project name, programming language(s),
natural language(s), platform(s), open source license type,

operating system(s), intended audience(s), and the main project
topic(s). Developer-oriented information includes: number of
developers, developer information (name, username, email), and
the developer's role on the project. We have also collected issue-
tracking data (mainly bugs) such as date opened, status, date
closed, priority and so on. Data has been collected from
Sourceforge, GNU Savannah, the Apache foundation’s Bugzilla
and Freshmeat. We are currently creating mappings between
fields from each of these repositories and assessing how
comparable the fields are. The forge-mapping task is extensive
and time-consuming, but the goal is to build a dataset that is
more complete and is not specific to only one particular forge.

Because OSSmole is constantly growing and changing as new
forges are added, and because data from multiple collectors is
both expected and encouraged, it is important that the database
also store information about where each data record originally
came from (i.e. script name, version, command-line options used,
name and contact information of person donating the data, and
date of collection and donation). This process ensures
accountability for problematic data, yet encourages collaboration
between data collectors. The information is stored inside the
database to ensure that it does not get decoupled from the data.
Donated raw data files are also stored in their original formats, in
case of problems with the database imports or unforseen mapping
problems between projects.

Likewise, it is a general rule that data is not overwritten when
project details change; rather, one of the goals of the OSSmole
project is that a full historical record of the project be kept in the
database. This will enable researchers to analyze project and
developer changes over time and enable access to data that is
difficult or impossible to access once it has slipped from the
repositories front ends.

Access to the OSSmole project is two-pronged: both data and
scripts are continually made available to the public under an open
source license. Anyone can download the OSSmole raw and
summary data for use in their own research projects or just to get
information about "the state of the industry" in open source
development. The raw data is provided as multiple text files;
these files are simply tab-delimited data dumps from the
OSSmole database. Summary files are compiled periodically, and
show basic statistics. Examples of summary statistics that are
commonly published would be: the count of projects using a
particular open source license type, or the count of new projects
in a particular forge by month and year, or the number of projects
that are written using each programming language. It is our hope
that more sophisticated analyses will be contributed by
researchers and that the system will provide dynamic and up-to-
date results rather than the static "snapshots" that traditional
publication unfortunately leaves us.

The scripts that populate the OSSmole database are also available
for download under an open source license. These scripts are
given for two reasons: first, so that interested researchers can
duplicate and validate our findings, and second, so that anyone
can expand on our work, for example by modifying a script to
collect data from a new forge. Indeed this process has begun with
the recent publication of a working paper comparing and
critiquing our spidering and summaries and beginning
collaboration [7]. OSSmole expects and encourages contributions
of additional forge data. (Each set of donated data is given a
unique number so that the different "data sources" can be
included or excluded for a given analysis. This allows us to

accept donated data, along with a description of where the data
came from. This transparency gives researchers the ability to
include or exclude the donation from their analyses.) Researchers
interested in donating or using OSSmole data should see the
OSSmole project page at http://ossmole.sf.net and join the
mailing list for information on how to contribute.

4. RESULTS
Because it is a regularly-updated, publicly-available data
repository, OSSmole data has been used both for constructing
basic summary reports about the state of open source, as well as
for more complex social network analyses of open source
development teams. For example, summary reports posted as part
of the OSSmole project regularly report the number of open
source projects, the number of projects per programming
language, the number of developers per project, etc. This sort of
descriptive data is useful for constructing "state of the industry"
reports, or for compiling general statistical information about
open source projects. The OSSmole collection methods are
transparent and able to be reproduced, so OSSmole can serve as a
reliable resource for these metrics. Having a stable and
consistently-updated source of this information will also allow
metrics to be compared over time. One of the problems with
existing analyses of open source project data is that researchers
will run a collection and analyze it once, publish the findings,
and then never run the analysis again. The OSSmole data model
and collection methodology was designed to support historical
comparisons of this kind.

OSSmole data was used in a number of large-scale social
network analyses of FLOSS project development. Crowston and
Howison [3] reports the results of a SNA centralization analysis
in which the data suggests that, contrary to the rhetoric of FLOSS
practicioner-advocates, there is no reason to assume that FLOSS
projects share social structures. Further OSSmole data was used
in the preparation of [2] which, in an effort to avoid the
ambiguities of relying on ratings or downloads, develops a range
of quantitative measures of FLOSS project success including the
half-life of bugs. OSSmole makes available the full data and
analysis scripts which make these analyses fully reproducible
and, we hope, extendable.

Another project using OSSmole data [1] explored whether open
source development teams have characteristics typical of a self-
organized, complex network. This research investigated whether
FLOSS development networks will evolve according to "rich get
richer" or "winner take all" models, like other self-organized
complex networks do. Are new links (developers) in this network
attracted to the largest, oldest, or fittest existing nodes (project
teams)? The OSSmole data was used to determine that there are
indeed many characteristics of a complex network present in
FLOSS software development, but that there may also be a
mutual selection process between developers and teams that
actually stops FLOSS projects from matching the "winner take
all" model seen in many other complex networks.

Recently, another researcher, Dawid Weiss, collected data by
spidering Sourceforge [7]. Weiss then compared the data and
collection methodology to the OSSmole data collection
techniques and results. He chose to focus mostly on the changes
between when his results were gathered, and when the first
OSSmole results were gathered a few months prior. There are
two main differences noted in this technical report. First, he
discovered that the Sourceforge management team made changes
to the data in between the two gathering processes (specifically,

they relabeled all the target operating systems and recategorized
them). Second, there are differences in how data is gathered and
cleaned between research projects (specifically, the OSSmole
team cleaned out any inaccessible project for which we could
gather no information other than a name, but he did not do this
cleaning). These two observations about the data collection and
analysis effort are precisely why OSSmole desires to be a
collaborative, "many eyes" approach.

The most interesting thing about the intersection of the Weiss
research with OSSmole is that he found the OSSmole dataset
without our assistance, conducted numerous analyses, then
contacted our team to share his results. This experience illustrates
the convenience and necessity of having a publicly-available
dataset of this information. Because OSSmole is designed with
collaboration in mind, these sorts of comparative results can be
easily integrated into the OSSmole database, and then used in
tandem with native OSSmole data or alone. As such, we have
now fully integrated the Weiss data into the OSSmole database.

5. LIMITATIONS AND FUTURE WORK
There are, of course, limitations in the OSSmole project and our
approach. Firstly, it is limited to data available online as a result
of documented project activities. Certainly, these are not the only
interactions FLOSS team members have. Thus while textual data
like mailing lists, source control system history and comments,
forums, and IRC chat logs could be included, OSSMole does not
capture unlogged instant messaging or IRC, voice-over-IP or
face-to-face interactions of FLOSS developers. Nor do we intend
to store interviews or transcripts conducted by researchers which
would be restricted by policies governing research on human
subjects. We are also following the discussion about the ethical
concerns of using data about open source projects closely [4].

There are also dangers in this approach which should be
acknowledged. The standardization implied in this kind of
repository, while desirable in many ways, runs the risk of
reducing the valuable diversity that has characterized academic
FLOSS research. We hope to provide a solid and traceable
dataset and basic analyses which will support, not inhibit,
interpretative and theoretical diversity. This diversity also means
that research is not rendered directly comparable simply because
analyses are based on OSSMole data or scripts. We are hopeful
that OSSMole, by acting as a scaffold, will give researchers more
time for such interesting work.

We will not be surprised to find parallel proposals or projects
being prepared or implemented by others in the academic
research community, although we are not aware of any detailed
proposals or existing code at the time of writing.

It is quite likely that a functional hierarchy could develop
between cooperating projects, something akin to the relationship
between FLOSS authors and distributions, such as Debian or Red
Hat and their package management systems (apt and rpm). For
example, such an arrangement would allow groups to specialize
in collecting and cleaning particular sources of data and others to
concentrate on their compatibility. Certainly the existing
communities of academics interested in FLOSS, such as
http://opensource.mit.edu, are encouraged to be a source of data
and support. Similarly, we would like to extend to people who
donate data the ability to specify a license for that data.

One of the practical problems with spidering projects, like
OSSmole, is keeping abreast of changes to the web site (or data
source) being spidered. This is a known challenge with any
spidering project, and was one of the main motivators for starting
this project in the first place: if one research team can worry
about spidering, saving, and aggregating the data, then that frees
other teams to do other interesting analyses with the data, or to
collect new data.

6. CONCLUSION
Researchers study FLOSS projects in order to better understand
collaborative human behavior during the process of building
software. Yet it is not clear that current researchers have many
common frames of reference when they write and speak about
the open source phenomenon. As we study open software
development we learn the value of openness and accessibility of
code and communications; OSSmole is a step towards applying
that to academic research on FLOSS. It is our hope that by
providing a repository of traceable and comparable data and
analyses on FLOSS projects, OSSmole begins to address these
difficulties and supports the development of a productive
ecosystem of FLOSS research.

7. ACKNOWLEDGMENTS
Our thanks to the members of the ossmole-discuss mailing list,
especially Gregorio Robles, Dawid Weiss, and Niti Jain.

8. REFERENCES
[1] Conklin, M. Do the rich get richer? The impact of power

laws on open source development projects. Open Source
Convention. (OSCON '04) (Portland, Oregon, USA, July 25-
30, 2004). At http://www.elon.edu/facstaff/mconklin/pubs/
oscon_revised.pdf.

[2] Crowston, K., Annabi, H., Howison, J., and Masano, C.
Towards a portfolio of FLOSS project success metrics. In
Proceedings of the Open Source Workshop of the
International Conference on Software Engineering (ICSE
'04).

[3] Crowston, K. and Howison, J. The social structure of free
and open source software development. First Monday 10, 2
(February, 2005).

[4] El-Emam, K. Ethics and Open Source. In Empirical
Software Engineering 6, 4 (Dec. 2001), 291-292.

[5] Howison, J. and Crowston, K. The perils and pitfalls of
mining Sourceforge. In Proceedings of the Workshop on
Mining Software Repositories at the International
Conference on Software Engineering (ICSE '04).

[6] Krishnamurthy, S. Cave or community? An empirical
examination of 100 mature open source projects. First
Monday 7, 6 (June, 2004).

[7] Weiss, D. A large crawl and quantitative analysis of open
source projects hosted on sourceforge. Research Report ra-
001/05, Institute of Computing Science, Pozna University of
Technology, Poland, 2005. At http://www.cs.put.poznan.pl/
dweiss/xml/publications/index.xml

[8] Xu, J, Gao, Y., Christley, S. and Madey, G. A topological
analysis of the open source software development
community. In Proceedings of 38th Hawaii International
Conference on System Sciences (HICSS 05) (Hawaii, USA,
January 4-7, 2005).

