
Coordinating and Motivating
open source contributors

Workshop @ LinuxWorldAsia

James Howison
School of Information Studies

Syracuse University
floss.syr.edu

The Human Side …

FLOSS is code but people too.
Volunteers, Paid developers, Individuals

and companies
Varying in aims, motivations and skills
Explore this landscape together

But first …

 I’m an Australian doctoral student studying in
the US with Prof. Kevin Crowston

 Background in Economics and Politics from
University of Sydney

 Master’s study in Computer Science at
University of New South Wales

 4th year of my PhD at Syracuse University
 Prof. Crowston provides support through a

grant from the US National Science
Foundation.

Research and Experience

 Interviews, surveys and studies of
development archives
 ApacheCon, O’Reilly OSCon,
 FOOCamp, OSDC in Australia

Developer on BibDesk, a small OS X
reference manager
 Scratching my graduate student itch

But India?

Just starting to learn …

So far learnt more about weddings and Saris!!

Detailed Overview

 Lifecycle of FLOSS projects
 Motivations of participants
 Joining projects

 For both individuals and companies
 Implications for project infrastructure

 Communications, CVS++, planning
 Want to weave your interests throughout
 Last hour is to workshop issues or opportunities you

face

Resources

 floss.syr.edu/Presentations/linuxworldasia/
 All the links and papers we’ll be discussing
 I would like to add resources suggested by

you

Quick Intros from you …

Who are you?
What’s your involvement with FLOSS?

Exercise: What do you want?

 Sheet of Paper and a Pen
 Jot down a question or topic from ‘the human

side’ of FLOSS you’d like addressed
 Pass it to your left and jot down another on the

sheet you get
 And again …
 Now from the sheet in front of you, read out

the one, from the three, that you like the best
…

The Basics

 FLOSS == Free, Libre, Open Source Software
 Different Ideologies, Similar social and software

practices
 Licenses and practices lead to collaborative

development with freely available code
 Teams and communities distributed across

organizations and geography

What’s being built?

 The headliners:
 Linux, Firefox, Apache httpd, perl

 These get all the press, but aren’t necessarily
typical of an open source project

 From small tools to entire software stacks
 Projects are diverse socially

 Personal stories are invaluable
 But empirical research is needed to balance

A model project lifecycle

Typically Individual or
Small co-located Group

An Open Source Team
and Community

A Cathedral before the Bazaar?

 “It's fairly clear that one cannot code from the
ground up in bazaar style. One can test,
debug and improve in bazaar style, but it
would be very hard to originate a project in
bazaar mode. ... When you start community-
building, what you need to be able to present
is a plausible promise.” ESR, CatB

Initial Conception and release

 The ideal:
 Simple aim, well understood locally
 Release that works, but not too well

 Yes, leave bugs (low hanging fruit …)
 Grows very slowly, resist early contribution

 Failed Projects
 Check out the vast majority of Games on SourceForge
 … huge teams early, big ideas, little or no code.

Transition: Building a team and a
community

First Question: What does one want?

But How Big?

 Teams on the
road to success
almost never
have above 10
core developers

 Very large
teams are either
massively
successful, or
clear failures

Co-developers

 Incremental improvements
Often without write access to CVS
Unexpected uses and solutions

Active Users

 The ‘many-eyes’ making bugs shallow
 Report and characterize bugs and feature

requests, usually for others to fix
 Provide ‘buffer’ between developers and new

users, especially for configuration heavy
projects (eg MythTV)

 Highly transitory, vast majority only participate
for around 10% of the lifetime of a project

Motivations

Understanding why people are involved
is useful for
 Understanding their actions
 Understanding what will interest and excite

them, and
 Understanding what is likely to annoy or

antagonize them

Brainstorming motivations

Think of your involvement, why are you
there?

Think of others
Write a few reasons down and pass to

your left.
Let’s get them on the whiteboard

What does the research say?

Quite a lot of survey research on FLOSS
participant’s motivations

Ghosh et al (2002) Infonomics survey
 Over 3,000 developers, many topics

Lakhani and Wolf (2003) “Why hackers
do what they do”
 678 participants in over 287 projects

Ghosh et al (2002)

1. Learning Skills,
2. Sharing,
3. For the products themselves,
4. Ideology,
5. New form of working,
6. Jobs and other personal extrinsic rewards

Ghosh continued …

 What about reputation?
 Found that it wasn’t crucial initially
 But became more important amongst longer term

contributors
 "94% of the OS/FS developers mark their

contribution to software projects as theirs (figure
50). Almost three fifths even declare that they
consider this as very important.”
 We’ll come back to this

Lakhani and Wolf (2004)

1. Enjoyment
 Intellectually stimulating
 Like to work with their team

2. “User need” for the product
3. Obligation to Community

Their results emphasize creativity. Autrijus Tang
(2005) calls this -Ofun (optimizing your
project for fun)

Does getting paid matter?

 Theory expects it to
 ‘crowding out’ of intrinsic motivations by extrinsic

motivations
 Lakhani and Wolf found

 40% of participants were getting paid (up from
Ghosh survey)

 Did not find ‘crowding out’ to matter but paid
participants did more work

 Other research shows that they move more quickly
to the centre of a project.

How’d we do?

Did we get all those?
Any we had up there that are missing?

Mythconceptions

“Beating proprietary software” always
shows up low on the list

Motivations are surprisingly varied and
multi-faceted.

 Ideology plays a secondary role

Summing up

Projects have a development lifecycle
 Different implications for interaction

Participants have diverse motivations
 Learning and challenge are key motivators

15 Minute Break

Back at 15.50?

Welcome back

What was the discussion at break?
Anything to add to the agenda?

Motivation implications

 Knowledge, Sharing, Product
 Open Communities

 Anonymous CVS that always builds
 No log-ins to get the source etc

 Ensure that potential developers can
immediate act on their motivation

Roadmaps

 Classic and traditional aid to project planning
 Helps customers understand migration and

development aims
 Can de-motivate a community …

 They can imply that everything is ‘under control’
 Plans are not action
 Free floating to-do lists are a more motivating

option
 Keep some ‘low-hanging’ fruit on there.

Legitimacy comes from action

No org chart
 But not without structure

(Show pretty SNA pics)

Informal
Structure

Projects are generally hierarchical
 in their communications structure

Centralization varies
— and varies over time

Leadership change

 Some high profile cases
 Some institutionalization of change

 Perl’s Pump-King
 Debian’s Leadership elections

 Empirical evidence suggests, however, that it
is quite uncommon.
 > 50% of teams only ever had 1 person at centre,

another 20% had 2 throughout their lifetime.
 Large projects do not have more leadership

changes (stability permits growth?)

Legitimacy from action, skill

 Action, contribution are source of legitimacy
 Presumption in favour of integrating work in many,

but not all projects
 However, technical skill and correctness plays

a role
 Gaim example. 3rd patch queue for “never to be

integrated”
 Need or “cash riding on it” are not reason

enough for people to cooperate.

Joining Projects

 I, or my company, wants to get involved in a
FLOSS project, how do I best go about it?

 Questions:
 Why?
 What level of involvement

 Base a business on FLOSS?
 Just fix a few bugs?

 What length of commitment do we expect?

“Joining Scripts”

von Krogh et al (2003) studied
participants joining projects, including
FreeNet

Eventual joiners started with code, not
with plans or offers
 Anonymous CVS facilitates this

Strategies for involvement

 Be there for the long term
 “FLOSS is only free if your time is worth nothing”
 Create a cost centre for your involvement for

employee time to be charged against
 Be a consistent ‘active user’

 Ask good questions (more on that next)
 Create useful bug reports

 Turn your use-case into a learning opportunity
for the developers
 Means sharing more than usual

What about ‘Bounties’?

 Tempting to replace long-term involvement with
cash
 Blunt, extrinsic reward

 Can be a risky proposition
 Failure of most ‘cash for code’ exchanges
 Risks offending the community
 Strangely enough, developers might have difficulty

accepting cash
 Might need a foundation for Tax purposes
 Difficult to divide, can cause resentment

Cash doesn’t make up for
legitimacy

 MythTV example -> PDF
 Compare to Pluto@Home’s attitude

 Packager of OpenSource media and home
automation solutions

 Release code but also detailed documentation
(dev.plutohome.org)

 Also are known to answer their phones for
developers

 Remember the motivations
 Skills, Sharing, Product

Creatively using cash

 “But I’ve got a budget”
 Internal cost centre for participation

 Consider organizing a “sprint”
 Focused face to face gathering
 Used in Python, Zope and Plone
 Computer Associates provided funding

 Clear Problem, Venue, WiFi, Food, Beer
 Best done by someone already familiar with

project and ideally gain support of lead dev

Friendly Forks

 There is a strong norm against forking FLOSS
projects

 Friendly forks hope to fork the code-base but
contribute back fixes relevant to both branches
 Apple’s Safari browser forked from khtml
 Knoppix forked from Debian

 Difficult, high effort and can spilt the user
community

ESR: “How to ask questions the
smart way”
 A gem of practical FLOSS culture advice
 “hackers actually like hard problems and good,

thought-provoking questions about them”
 “good questions are a stimulus and a gift”
 Do the homework and describe it in the question

 FAQ, Archives, Web
 Read the source (if you can)

 “Display what you have learned from doing these
things”

 Make it clear that you will follow through

More on smart questions …

 Get the forum right
 Ask in public (Larry Wall “Learning in Public”)
 If not hacking on code, ask the user list

 Use good, old-school email technique
 Use Plain text

 Use links to pictures, and large files rather than attachments
(YouSendIt.com)

 Outlook can be properly configured
 Don’t ‘top post’
 Selectively quote earlier discussion creating a thread with ‘>’

characters
 Most of all, show your adventure towards an answer,

not your frustration.

Reporting Bugs

Re-try with the latest code from CVS
 Nightly release also fine

Persistence
 Be part of the conversation to characterise

and fix the bug
Steps to re-produce are crucial

Project Communications
Infrastructure
 Goal is to balance incidental awareness

against overload
 Briefly skimming discussion not directly

relevant creates shared understand
 Also knowledge about “who knows what”

 Only split lists after overload has become a
problem
 Start with one list called “dev” and one tracker
 Split to “users” and perhaps Bugs and RFE
 ‘Support’ Trackers are usually pointless

Project comms II

 Mail is generally preferable to Forums
 All in one place (the mail reader)
 Large projects with active users and many new

users do well with Web Forums
 Synchronous vs Asynchronous

 It’s fast, but excludes people
 Tends towards less thought through questions

Break …

Back at 4.30?

Round Table Discussion

Let’s review our generated list of
interests
 Did we cover these?

What would you like to discuss?
 Practice “the smart way”
 Concrete detail
 Your ‘adventure’

Any suggestions for research?

 I’ve been jotting down notes …
Any topics you’d like to know more

about?
Any ‘conventional wisdom’ that you are

not seeing come true?

Thanks

Remember resources at:
 floss.syr.edu/Presentations/linuxworldasia/

