

C ommunications of the

A I S ssociation for nformation ystems

Research Paper ISSN: 1529-3181

Volume 34 Paper XXX pp. 555 – 580 September 2019

Decision-Making Processes in Community-based Free/Libre Open
Source Software Development Teams with Internal Governance: An

Extension to Decision-Making Theory

U. Yeliz Eseryel
East Carolina University

Kangning Wei
Shandong University

Kevin Crowston
Syracuse University

Abstract:

Community-based FLOSS teams with internal governance are an extreme example of distributed teams,
prominent in software development. At the core of distributed team success is team decision-making and
execution. However, in the case of FLOSS teams, the lack of formal organizational structures to guide
practices and the reliance on asynchronous communication might be expected to make decision making
problematic. Despite these challenges many FLOSS teams are effective. There is a paucity of research in
how organizations make IS development decisions in general, and the research in FLOSS decision- making
models is particularly limited. Decision-making literature in FLOSS teams has focused on the distribution of
decision-making power. Therefore, it is not clear which decision-making theories fit the FLOSS context
best, or whether novel decision-making models are required. We adopted a process-based perspective to
analyze decision-making in five community-based FLOSS teams. We identified five different decision-
making processes, indicating FLOSS teams use multiple processes when making decisions. Decision-
making behaviors were stable across projects despite different type of knowledge required. We help fill the
literature gap about which FLOSS decision mechanisms can be explained using classical decision-making
theories. Practically, community and company leaders can use knowledge of these decision processes to
develop infrastructure that fits FLOSS decision-making processes.

Keywords: Decision making; Decision process; Free/Libre Open source software development; OSS;
F/LOSS

This manuscript underwent [editorial/peer] review. It was received xx/xx/20xx and was with the authors for XX months for XX revisions. [firstname
lastname] served as Associate Editor. or The Associate Editor chose to remain anonymous.]

 2

1. Introduction
This paper identifies decision-making processes in community-based Free/Libre Open Source Software
(FLOSS) development teams with internal governance. As an essential component of team behavior
(Guzzo & Salas, 1995), decision making has been extensively studied. Understanding decision-making
processes in teams is important because the effectiveness of decision-making processes can have a large
impact on overall team performance (Hackman, 1990). Decision making is of particular interest in
information systems research because these processes are often supported and influenced by advanced
information and communication technologies (ICT) (Huber, 1990; Shaikh & Karjaluoto, 2015).

Our study is set in the context of FLOSS teams. Researchers are interested in FLOSS as an important
phenomenon in its own right and as a potential influence on the larger IS information systems domain
(Niederman, Davis, Greiner, Wynn, & York, 2006b). FLOSS has been said to enable small businesses
and users to play a role in democratized business software innovation within the business ecosystems
(Allen, 2012). Andriole (2012) suggests that FLOSS is impactful because of the open architectures it
encourages meaning that FLOSS creeps into every layer of the software stack. FLOSS provides many
benefits and challenges to software developers and users compared to off-the-shelf software. Its benefits
include higher reliability, improved security, and low cost, whereas the challenges include the lack of
deadlines for implementing feature or bug fixes, not being as well-established in some areas, and often
imposing high barriers to entry for non-technical users (Almarzouq, 2005).

Nelson, Sen, and Subramaniam (2006) identified that “a significant opportunity exists for studying the
evolution of coordination mechanisms in FLOSS projects” (p.278). Given that decision-making structures
in the FLOSS teams are dynamic and consensus-driven (Nelson et al., 2006), we will take the
recommendation by Nelson et al. (2006) to investigate the extent to which FLOSS decision mechanisms
can be explained using classical theories from organizational structure or require new thinking.

However, FLOSS teams are not all the same: there are different types of FLOSS teams, which could affect
the governance and decision-making structures, making it necessary to bound our study. West and
O'Mahony (2008) identified two types of FLOSS communities, namely autonomous and self-managed
communities versus sponsored communities. Di Tullio and Staples (2013) proposed a finer division into
three types/phases of FLOSS governance as identified by de Laat (2007), namely (1) spontaneous
governance, (2) internal governance, and (3) governance towards outside parties. Spontaneous
governance refers to small projects that are self-directing and that have no explicit or formal control or
coordination mechanisms. Internal governance refers to projects that have existed for a period of time and
have multiple participants, requiring coordination and control to achieve desired outcomes (Midha &
Bhattacherjee, 2012). However, these projects are still governed from within the project team. The last
type of governance is one where the projects are highly institutionalized, either because of a non-profit
foundation to protect the project, or when a project works with companies, meaning that governance is
determined by those parties. We focus our study on the second type of projects, those that have internal
governance because they are big enough to have identifiable decision processes but these processes can
still be emergent. We refer to this type of FLOSS teams as “community-based FLOSS teams with internal
governance”. In the remainder of this article, we use the terms FLOSS teams and community-based
FLOSS teams with internal governance interchangeably for brevity.

Our interest in understanding the decision-making process in community-based FLOSS teams with
internal governance was motivated by three distinct characteristics of the FLOSS context that we expected
would pose barriers to effective decision-making, requiring novel decision-making processes.

First, community-based FLOSS teams with internal governance are generally virtual, as developers
contribute from around the world, meet face-to-face infrequently if at all, and coordinate their activity
primarily by means of ICT (Crowston, Wei, Howison, & Wiggins, 2012). The extensive use of ICT changes
the way members can interact and so how they make decisions (Kiesler & Sproull, 1992). A lack of shared
context and numerous discontinuities in communication faced by virtual team members can hamper
decision making (Watson-Manheim, Chudoba, & Crowston, 2002). While the FLOSS teams with
governance toward outside parties, such as projects under the Apache Foundation or company-based

 3

FLOSS projects such as Red-Hat have a shared context and shared norms, community-based FLOSS
teams lack these commonalities that help ease common work.

In community-based FLOSS teams with internal governance, not only is the communication
technologically mediated, but so too is the work itself. A further complication is that prior research has
suggested that information technologies can affect the decision-making mechanisms (Kiesler & Sproull,
1992). Asynchronous communications make it impossible for the participants to catch cues available in
synchronous media such as voice tone, speed, and body language. The lack of such cues may create
barriers to decision-making process since sense-making and understanding become more difficult for the
participants. On the other hand, we do not know to which extent asynchronous decision-making may allow
for the use of novel decision-making processes.

Second, given the distributed nature of the work over different time-zones, decision-making processes
must enable participants from all around the world to contribute despite time-zone differences. For
instance, decision-making processes are usually asynchronous in nature. FLOSS teams in particular rely
on information technologies, such as team discussion fora, websites, bug trackers and source code
repositories, what Barcellini, Détienne and Burkhardt (2014) term discussion spaces, for communication,
coordination and discussion of alternatives. The asynchronous collaboration provides an additional
unexpected benefit. In FLOSS development teams, the knowledge base for the decision and the decision-
making actions are widely accessible and those interested can contribute with their opinions and
knowledge with minimal barriers. In comparison to traditional organizations, it has been found that more
people in FLOSS development can share power and be involved in team’s activities (Crowston et al.,
2012). The more participants and more discussions are involved in the decision-making processes, the
more knowledge is accessible and transparent to many others, which in turn, enables participants to work
on their own, and contribute what they have done back to the FLOSS development teams.

Third, unlike organizational teams, prior literature has identified community-based FLOSS teams with
internal governance as being self-organizing, autonomous and self-managed (West & O'Mahony, 2008),
meaning that they are not managed with formal authority relations (O'Mahony & Ferraro, 2004a, 2007),
i.e., their leaders are not externally appointed. Indications of ranks or roles are materialized through
interaction rather than external cues, meaning that there is no hierarchical source of decision authority. In
these teams, leadership is emergent and fluid in that individuals gain or lose leadership through their
actions over time (Eseryel & Eseryel, 2013). FLOSS members, similar to most members in engineering
settings, value technical contributions over all else and are said to eschew positional power. Eseryel &
Eseryel (2013) found that the leaders provide action-embedded transformational leadership, which means
that they “emerge as leaders through their consistently noteworthy contributions to their team over
extended periods of time and through the inspiration they provide other team members” (p.108). This
makes decision-making in this setting even more important, as decisions are likely to contribute to
leadership emergence, and provide the basis for organizing. Technical contributions that are valued by
other team members (such as the number and popularity of the packages one maintains) can determine
membership and leadership decision of those members. Yet, when communities impose rules such as
face-to-face meetings, key signings, and recommendations by existing members for membership, such as
in the case of the Debian community, these may influence the relative influence of technical contributions
on membership and leadership, and introduce new factors such as the centrality within face-to-face
networks as important determinants (O'Mahony & Ferraro, 2004a, 2007).

Niederman et al. (2006b) suggest a multi-level approach to investigating FLOSS, namely, at the group,
project and community levels of investigation. Further, they recommend the study of mechanics for artifact
creation. In this article, following their advice, we are investigating the mechanics of decision making for
software development. Examination of how decision-making processes are adapted in the face of these
characteristics will extend our understanding of team decision making. Furthermore, understanding how
the technological systems that support and constrain virtual work affect decision-making processes should
be informative for many kinds of knowledge work, which becomes increasingly virtual. At a more specific
level, knowledge of FLOSS decision-making process can be informative for organizations or firms
collaborating with FLOSS teams (Santos, Kuk, Kon, & Pearson, 2013). FLOSS impacted the software
industry significantly and many organizations develop and/or use FLOSS (Ven & Verelst, 2011). As
organization’s engagement in FLOSS development is not passive (Colombo, Piva, & Rossi-Lamastra,
2014), understanding the decision-making processes in FLOSS is critical for organizations hoping to

 4

extract the most values from their interactions with these communities. Our investigation on FLOSS
decision making is in line with Feller and Fitzgerald’s (2000) recommended research agenda which should
focus on the development processes of FLOSS communities based on the traditional reporting questions
such as who, what, where, when, why and how.

While decision making has been recognized as an important function in FLOSS teams (Crowston et al.,
2012), prior literature has black-boxed FLOSS related decisions, and provided mainly the outcomes of the
decisions rather than investigating the process of decision-making. To fill this gap, we explore how
decision-making processes are structured in community-based FLOSS development teams. More
specifically, based on the contingency model of decision-making processes (which will be discussed in
detail in section 2), we answer the following research question:

RQ: What decision-making processes emerge in community-based FLOSS development teams with
internal governance?

To answer this research question, we analyze decision episodes from five FLOSS teams to identify distinct
decision-making patterns.

2 Theoretical Background
In this section, we first position our research within the extant FLOSS research. Then we introduce phase
theories of team decision-making processes, which we use to analyze FLOSS data.

2.1 Overview of Extant FLOSS Research and Decision Making
To position our research within the current FLOSS literature, we provide a brief review of the FLOSS
literature, with examples and we discuss how each stream addressed decision making. There is much
research in open source software and numerous review articles summarize the state of FLOSS research
at various points in time (e.g., Aksulu & Wade, 2010; Crowston et al., 2012; Nelson et al., 2006; Niederman,
Davis, Greiner, Wynn, & York, 2006a; Scacchi, 2007; von Krogh & von Hippel, 2006). Our purpose is not
to provide a comprehensive review of all the publications, but rather to give the reader a brief overview.
We categorize FLOSS research in six areas: (1) FLOSS as an example of a unique phenomenon, (2)
Country, industry and market level investigations, (3) Company-level decisions, (4) Project-level processes
and decisions, (5) Inter-project influences, (6) Individual level decisions. Our research falls into the fourth
category.

We define the first area of FLOSS research as “FLOSS as an example of a unique phenomenon”. Some
examples include Love and Hirschheim (2017) conceptualizing FLOSS as exemplifying the emerging
genre of crowdsourced research genre. Similarly, Pykäläinen, Yang, and Fang (2009) defined FLOSS
strategy as a novel strategy and identified conditions where this strategy would be viable. von Krogh (2009)
used FLOSS phenomenon to illustrate how in developing theory about knowledge, both individualist and
collectivist perspectives on the locus of knowledge are needed. Barrett, Heracleous, and Walsham (2013)
approached FLOSS diffusion as an IT-related innovation, a computerization movement.

We classify the second stream of FLOSS research as macro-level FLOSS research, meaning country,
industry and market-level research on FLOSS. For example, Maldonado (2010) identified the process of
FLOSS adoption and innovation at the country level with a case study on Venezuela. Deodhar, Saxena,
Gupta, and Ruohonen (2012) identified the emergent hybrid business models that software product
vendors use as a result of combining FLOSS models and their existing business models.

The third type of FLOSS research focuses on company-level decisions. These decisions are strategic
decisions about a range of issues at the company level including strategy determination, value creation,
licensing, FLOSS acquisition and adoption, and the use of employee time and skills. For example, Morgan
and colleagues theorized on OSS-based value-creation and value-capturing using inter-organizational
networks (Morgan, Feller, & Finnegan, 2013; Morgan & Finnegan, 2014). Alspaugh, Scacchi, and
Asuncion (2010) provided guidance for achieving best-of-breed component strategy while obtaining
desired license rights when FLOSS software and proprietary software development efforts are combined.
Singh and Phelps (2013) identified the factors that influence FLOSS licensing decisions. Mehra, Dewan,
and Freimer (2011) and Mehra and Mookerjee (2012) developed analytical models to support employment

 5

contract decisions to combine FLOSS participation and wage payments. Benlian (2011) developed a
framework for identifying how IS managers make acquisition decisions for FLOSS versus traditional
software or on-demand software. Macredie and Mijinyawa (2011) developed a framework on OSS
adoption decisions by SME’s. Marsan, Pare, and Beaudry (2012) investigated the perceptions of IT
specialists and their backgrounds that affect FLOSS adoption decision. Feller, Finnegan, and Nilsson
(2011) found four typologies for FLOSS innovation process adoption by public organizations and relevant
affect business models. Chengalur-Smith, Sidorova, and Daniel (2010) showed how infrastructure source
openness influences FLOSS technology use decision, which in turn increases business value. Machado,
Raghu, Sainam, and Sinha (2017) discussed how the existence of FLOSS alternatives affects the firms’
pricing strategies and piracy control efforts. Similarly, August, Shin, and Tunca (2013) developed an
economic model to jointly analyze the investment and pricing decisions of the originator companies of
software and subsequent FLOSS contributors.

The fourth type of FLOSS research is conducted to investigate various processes at the project level,
which is our focus. This stream of research focused on determinants of project success, project
attractiveness, as well as the various processes used within projects such as innovation, knowledge
creation, and requirements engineering. Much research at the project level focused on FLOSS
development processes (e.g., Howison & Crowston, 2014; Wang, Kuzmickaja, Stol, Abrahamsson, &
Fitzgerald, 2014; Wei, Crowston, Li, & Heckman, 2014). Others, such as Daniel and Stewart (2016)
identified sources for project success when FLOSS projects share key resources such as developer
attention and knowledge. They found that software coupling, interactive discussion and externally focused
developer attention directly impact completed code commits. In their article investigating project success,
Daniel, Midha, Bhattacherjee, and Singh (2018) showed that participant differences (language, role, and
contribution) and project differences (development environment and connectedness) have main and
moderating effects on project success. Eseryel and Eseryel (2013) discussed how individuals emerge as
leaders in FLOSS projects, exhibit transformational FLOSS leadership and thereby strategically influence
systems development. Setia, Rajogopalan, and Sambamurthy (2012) showed that peripheral developers
contribute to software product quality and diffusion. Santos et al. (2013) developed a theoretical model
identifying the contextual and causal factors that determine project attractiveness (source code
contribution, software maintenance and usage). They found that factors such as license restrictiveness
and available resources directly influence the amount of work activities within projects. Xiao, Lindberg,
Hansen, and Lyytinen (2018) investigated the requirements engineering process and showed how the
distributed, dynamic and heterogeneous structure underlying FLOSS influences the mechanisms for
managing requirements.

In this stream, one can find prior FLOSS decision-making studies at the project level or at the inter-project
level. However, they do not “open the black box” to examine in detail the process that the developers use
to make technical and strategic decisions about the software development. The research on decisions
instead typically examines governance, leadership and authority. For example, studies have examined the
distribution of decision-making power (e.g., Fitzgerald, 2006; German, 2003) and found that participants
nearer to the core have greater control and discretionary decision-making authority compared to those
further from the core. O'Mahony and Ferraro (2004a, 2007) found that centrality in the face-to-face network
and to a lesser degree, technical contributions determine team membership, which is the basis to make
certain type of decisions with respect to the software code.

Research has further categorized different governance mechanisms and approaches to leadership in
different FLOSS teams. A connection has been observed between hierarchical governance structure and
centralization of decision-making processes (Gacek & Arief, 2004). The centralized decision-making
process in Linux Kernel (Moon & Sproull, 2000) has been characterized as a benevolent dictatorship
(Raymond, 1998). In contrast, the relatively non-hierarchical GNOME team has a decentralized decision-
making process involving task-forces (German, 2003). Finally, roles and decision-making structures have
been observed to be dynamic (Nelson et al., 2006; Raymond, 2001; Robles, 2004) and fluid (O'Mahony &
Ferraro, 2004b). Fitzgerald (2006) suggested that early in the life of a team, a small subset will control
decision making, but as the software grows, more developers will get involved.

As FLOSS developers tend to work on multiple projects, the fifth research stream focused on the
influences on membership in multiple FLOSS projects on the project level outcomes. For example, Singh,
Tan, and Mookerjee (2011) showed influences of project internal cohesion and external cohesion on

 6

project success as well as the influences of the project’s external network’s technological diversity. Peng
and Dey (2013) found that co-membership among project teams is an effective mechanism for building
network ties for knowledge sharing and further specified that leader-follower and follower-leader network
ties are more beneficial to OSS success than other types of ties. Chua and Yeow (2010) investigated the
coordination process in cross-project FLOSS development and the role of development artifacts.

The last and the sixth type of FLOSS research includes FLOSS decisions at the individual level. The most
common type of research within this category includes the participation motivation (Benbya & Belbaly,
2010; von Krogh, Haefliger, Spaeth, & Wallin, 2012), and commitment (Bateman, Gray, & Butler, 2011;
Daniel, Maruping, Cataldo, & Herbsleb, 2018). Howison and Crowston (2014) investigated individuals’
decisions to do certain tasks and found that majority of the tasks are done by a single individual and those
tasks that are too large for an individual get deferred. Ke and Zhang (2010) identified the influence of
various types of motivations on the level of task effort put forth by the FLOSS developers. Choi, Chengalur-
Smith, and Nevo (2015) investigated the influence of three community markers (ideology, loyalty and
identification) on the behaviors of passive users such as user brand extension, word-of-mouth, community
involvement and endorsement. Wen, Forman, and Graham (2013) showed how user interest and
developer activity in FLOSS software are influenced by lawsuits. Singh, Tan, and Youn (2011) investigated
how individuals with different learning states learn from their peers versus from their own learning
experience. Factors that influence developers’ code reuse decisions are investigated by Sojer and Henkel
(2010), who found that individuals with larger networks tend to reuse existing code more than other
developers.

To sum up the six types of FLOSS research, the more macro-level FLOSS research, such as the country,
industry, market and company-level research, includes macro decisions about FLOSS such as the
decisions about adoption strategies, how to create value for companies, how to best reward employees or
price software. The decisions at the most micro level, namely at the individual level, focus on individual
decisions such as whether to participate or not, how much to commit to FLOSS, which tasks to take on or
whether to reuse code or not. Those studies that investigate project-level decision-making, in fact examine
the general governance of FLOSS, such as who has decision-making power. However, there is a lack of
empirical research that opens up the black box of FLOSS decision-making process. This gap is illustrated
in the lack of coverage of the topic in published FLOSS review and research framework articles (Aksulu &
Wade, 2010; Crowston et al., 2012; Nelson et al., 2006; Niederman et al., 2006a; Scacchi, 2007; von Krogh
& von Hippel, 2006).

2.2 Phase Theories of Team Decision-Making Processes
To investigate decision-making process, it is important to clarify what constitutes a “team decision” in
FLOSS settings. We define FLOSS team decisions as explicit and implicit consensus decisions (Kerr &
Tindale, 2004) that bind the team and the external users of the software as a whole to a future course of
action, e.g., decisions about which bugs to fix and how or which features to add, as well as more strategic
decisions related to social, organizational, strategic and legal aspects of development.

Explicit consensus refers to a case where all or most of the team members participate in the decision
process and explicitly state their agreement with the decision (e.g., by voting). Implicit consensus refers to
occasions where one or more members make the decisions in a public forum, meaning that all team
members can observe the decision due to the openness provided by the ICT, but where there is no explicitly
expressed agreement or disagreement from others. The idea of implicit consensus reflects the fact that in
FLOSS teams, communication and work rely on open broadcast media, and so are transparent to all. Thus,
any teamwork that is shared and not rejected by others has been implicitly agreed to by the rest of the
team. Of course, apparent implicit consensus may also be a result of non-participation in the process, but
repeated non-participants have essentially ceased to be team members, meaning that implicit decisions
still reflect a consensus of the active team participants.

In this section, we review prior theories on team decision-making processes as a basis for identifying
decision-making process in FLOSS teams.

A number of frameworks have been proposed to describe the phases of team decision-making processes.
A phase is defined as “a period of coherent activity that serves some decision-related function, such as

 7

problem definition, orientation, solution development, or socio-emotional expression” (Poole & Baldwin,
1996, p.216). Early studies proposed normative models to describe how decisions are made in a unitary
sequence of decision phases (Poole & Roth, 1989a), which suggest that teams follow a systematic logic to
reach decisions (Miller, 2008).

However, Poole and his colleagues suggested that the normative models are not adequate to capture the
dynamic nature of decision-making sequences, and propose another class of phase models, multiple-
sequence models (Poole, 1983; Poole & Roth, 1989a). In these models, teams might also follow “more
complex processes in which phases repeat themselves and groups cycle back to previously completed
activities as they discover or encounter problems. Also possible are shorter, degenerate sequences
containing only part of the complement of unitary sequence phases” (Poole & Baldwin, 1996, p.217). Based
on a study of 47 team decisions, Poole and Roth (1989a) identified 11 different decision processes that fell
into three main groups: unitary, complex and solution-centered sequences. The sequences in these
processes typically emerge spontaneously during the decision making, rather than being planned by the
team ahead of time.

Multiple-sequence models of decision making are advantageous because they not only capture the
complexity of the decision-making process that may vary due to factors such as task structure (Poole,
1983), but also provide a systematic approach to studying the dynamic decision-making processes
(Mintzberg, Raisinghani, & Theoret, 1976; Poole & Roth, 1989a). Further, multiple sequence models
provide guidance for practitioners to adapt to changing demands (Poole, 1983; Poole & Baldwin, 1996) by
providing a framework for structuring analyses of decision processes, terminology and a basis for
comparison between diverse processes. We therefore adopted this approach in this paper.

As a starting point for our analyses, we use the extant literature on sequence models and the studies which
identify decision-making process phases based on team communications analyses (Mintzberg et al., 1976;
Poole & Baldwin, 1996). Specifically, we adapted the Decision Functions Coding System (DFCS) developed
by Poole and Roth (1989a) to the FLOSS context to identify different decision-making processes in FLOSS
context. The details of this system and our adaptations are discussed below in section 4.2.

3 Research Method
We turn now to the design of a study to address our research question. Given the exploratory nature of our
research we designed a qualitative study. We collected 300 decision episodes from five FLOSS projects
and content analyzed the episodes to identify distinct decision-making processes.

3.1 Case Selection Decision to Control for Unwanted Systematic Variance
We sought to choose projects that would provide a meaningful basis for comparison across the three
contextual factors. As previously noted, FLOSS business models are diverse. To control unwanted
systematic variance, we chose community-based projects with internal governance structure that were
roughly similar in age, and that were all at production/stable development status. Projects at this stage have
relatively developed membership and sufficient team history to have established decision-making
processes, yet the software code still has room for improvement, which enables us to observe rich team
interaction processes around development. Acknowledging that the development tools used might structure
the decision-making processes, we selected projects that were all hosted on SourceForge
(www.sourceforge.net), a FLOSS development site popular at the time of data collection that provides a
consistent ICT infrastructure to developers. Table 1 below provides the overview of selected cases, which
are described further below.

Therefore, we picked two different types of software, where the participants’ knowledge about the software
differs, which may in turn influence the patterns of interaction and decision-making. Specifically, we selected
projects that developed Instant Messenger (IM) clients and Enterprise Resource Planning (ERP) systems,
expecting that these two types of projects would be different in complexity, which in turn would affect the
decision-making processes.

 8

We initially chose 3 cases for each project type: Gaim (currently known as Pidgin), aMSN and Fire from IM
projects, and Compiere, WebERP and OFBiz (currently known as Apache OFBiz1) from ERP projects.
However, during data analysis we came to realize that Compiere was not a community-based project like
the others, since it was started by a company and now has both community and commercial aspects in its
development. Therefore, it would be better classified as a team with governance toward outside parties
based on the governance categorizations of de Laat (2007). To avoid possible bias introduced by this
project, we decided to remove this project from our study, resulting in 5 (3 IM and 2 ERP) projects in the
final design.

Table 1. Project Comparison

Project
Name /
Category

Gaim2
(Pidgin)

Fire aMSN WebERP1 OFBiz3

Type

Instant
Messaging

Client

Instant Messaging
Client

Instant
Messaging

Client

Enterprise
Resource

Planning (ERP)
System

Enterprise
Resource

Planning (ERP)
System

Lines of
Code

244,709 6,499,251 1,490,772

Mostly
Written In

C C, C++, Objective C Tcl/Tk PHP Java

Webpage Pidgin.im Fire.sourceforge.net www.amsn-
project.net

www.weberp.org Ofbiz.apache.org

Type Multi-
Protocol

Multi-Protocol Single-
Protocol

N/A N/A

Project
License

gpl gpl gpl v2 gpl Apache v2

Developers 10 12 414 27 35

Initial
Release

November
1998

April 1999 May 2002 January 2003 November 2001

ERP systems are some of the most complex software (Parr, Shanks, & Darke, 1999; Sumner, 2000) for
several reasons. First, a typical ERP system has many modules and features that are distributed across a
company’s different functions. For example, OFBiz has Accounting (general ledger, accounts receivable,
accounts payable, fixed assets), Customer Resource Management, Order Management, E-Commerce,
Warehousing and Inventory, Manufacturing and MRP modules. Similarly, WebERP provides general
ledger, accounts payable, accounts receivable modules, purchase/procurement module, inventory module,
sales and order management module, customer relationship management module, supply chain
management module, document management system module, payroll and attendance module, SMS and

1 At the time of the study, OFBiz was not under the Apache umbrella but was a community-based FLOSS project

like the other selected projects.
2 Most of the data on Gaim (Pidgin), OfBiz and WebERP were collected from Openhub.net using the compare
projects function.
3 Source: https://www.openhub.net/p/Apache-OFBiz
4 Source: http://www.amsn-project.net/current-developers.php

 9

email module and security module. OFBiz provides the features of product and catalog management,
promotion and pricing management, supply chain fulfillment, contracts, payments and billing, which are
functions that are spread between sales, marketing, customer management, supply chain, accounting and
finance. Each of these areas requires unique domain knowledge, in addition to technical knowledge. Rettig
(2007) suggested that these systems are so complex that developing and changing them becomes risky
because no single person within an organization could possibly know how a change in one part of the
software will affect its functioning elsewhere (p.22). Modules in the ERP software have high software code
interdependencies and many external knowledge constraints such as accounting rules and legal reporting
requirements. ERP software developers also need to consider how the software can be engineered to fit
the needs of diverse companies. Second, ERP systems integrate high volume of data, which were earlier
either unavailable or impossible to derive with other software (Chaudhari & Ghone, 2015). Further, the level
of automation that ERP provides (Haddara, 2018) adds to the complexity of the software. Glass (2003, p.
58) suggests that for every 25% increase in complexity in the tasks to be automated, the complexity of the
software rises by 100%. As a result of these factors, ERP systems are “massive programs, with millions of
lines of code, thousands of installation options and countless interrelated pieces, [and thus they] introduced
new levels of complexity” (Rettig, 2007, p. 23). Part of the complexity comes from the sheer size of these
programs as indicated by the lines of code included (1.5M and 6.5M for OFBiz and WebERP). A Carnegie
Mellon Study finds that the average professional coder makes 100 to 150 errors for every 1,000 lines of
code, (Mann, 2002). That means for an ERP system such as WebERP of 6,5 million lines of codes, there
could be anywhere between 650,000 to 975,000 bugs to fix as the software is being developed.

In contrast, IM clients have one main function and a handful features. The knowledge that the developers
need may be purely experiential based on their own use, in serving the needs of many. Their code base
may be in the thousands of lines of code compared to millions of lines for ERP systems. Many more
individuals may participate in the programming, due to lower levels of skills needed, and therefore lower
barriers to entry. Therefore, it is expected that the IM projects have relatively simpler decision processes,
where fewer individuals’ inputs are needed, for example. To sum up, we expect that due to the differences
in the types and variety of knowledge needed between ERP and IM software, we expect the decision-
making processes in ERP projects to differ from those in IM projects.

4 Identification of the Patterns of Decision-Making Process
In the following sections, we describe the research method in each phase and report the findings in detail.
Specifically, section 4 describes the qualitative design to identify different decision-making processes and
the corresponding results.

4.1 Data and Unit of Analysis
We decided to initiate our investigation with a uniform communication and decision-making tool that exists
across all FLOSS teams, and where our findings may be more easily applied to and generalized in other
similar yet non-FLOSS contexts. Our goal was to identify generic decision-making processes for strategic
and tactical decisions, which may then be tested at other communication and decision-making tools used
by FLOSS teams. In collecting strategic versus tactical decision episodes we used the following definitions:
We defined tactical decisions as decisions where the central issues are related to an indication for a change
in the software code. This included an acceptance of a patch or lines of code that will become part of the
code base. We defined the strategic decisions as the decisions where central issues are not code related.
The topics of decisions include legal issues, membership issues, funding, maintaining a positive group
atmosphere, and software architecture.

Before we collected our data for this study, we followed a number of venues for decision-making, including
issue trackers, instant messaging tools of projects such as GAIM and the developers’ fora5. We observed
that developers’ fora were best in their coverage of both strategic decision and tactical decisions, whereas
the use of issue trackers were solely limited to technical issues such as solving bugs or new features, and

5 During our data collection, none of the projects were using GitHub.

 10

the instant messaging tools such as Internet Relay Chat (IRC) were typically6 used to ask for advice on an
area that a developer is stuck on, rather than for making decisions at the group level. This decision of
collecting data from a tool that hosts both strategic and tactical decision-making is in line with the phase-
based decision-making theories that we use for this study. The decision-making literature includes both
strategic and tactical decision-making processes: Key studies that informed this literature stream were
conducted with strategic decision-making teams as well as with student teams making tactical decisions
(e.g., Poole, 1983).

Data were obtained from the SourceForge website. Our analysis of the developers’ fora interactions
regarding the decisions we analyzed did not reveal references to off-line discussions, suggesting that this
data source provided a complete view of the decision-making process, at least for the decisions analyzed
for this study. Furthermore, we intently checked for and did not find evidence of discussions/decisions being
split among different communication media when we specifically searched for issues across different media.
Therefore, we were able to observe full decision-episodes in the developers’ fora.

As our primary unit of coding and analysis, we selected the decision episode, defined as a sequence of
messages that begins with a decision trigger that presents an opportunity or a problem that needs to be
decided and that includes the required acts of issue discussion and which possibly ends with a decision
announcement (Annabi, Crowston, & Heckman, 2008). To give an example, a decision trigger may be a
feature request or a report of a software bug. A decision announcement may be either a statement of the
intention to do something or an actual implementation of a fix. Note that some decision processes did not
result in a decision that was announced to the group, while others had multiple announcements as the
decision was revised. The messages in an episode capture the interactions among team members that
constitute the process of making a particular decision from start to finish.

Decision episodes were identified from the continuous stream of available messages through an initial
coding process done independently by two of the authors. We started the analysis by reading through the
messages until we identified a message containing a decision trigger or announcement. Once we found a
trigger or announcement, we identified the sequence of messages that embodied the team process for that
decision. We observed that teams generally organize discussions in a thread, occasionally initiating new
threads with the same or similar subject line. Therefore, we developed a decision episode by combining
one or more discussion threads that used the same or a similar subject line as the initial message and that
discussed the same main issue. Our explorative evaluation of the threads showed that any such follow-ups
were typically posted within the following month, and in more extreme cases within 3 months. We therefore
searched for messages on the same or similar content up to three months after the posting date of the last
message on a thread. Since we were analyzing the messages retrospectively, we could collect all of the
messages related to the decision over time.

The process of identifying messages to include in each episode proceeded iteratively, as the two
researchers collected messages, shared the process they used with the research team, and revised their
process as a result of feedback from the team. The pairwise inter-coder reliability reached 85% and 80%
respectively on decision triggers and decision announcements. All differences between coders were
reconciled through discussion to obtain the sample of episodes for analysis.

6 It was our observation that IRC was generally used to get quick help from fellow coders. However, we would
like to acknowledge that one anonymous reviewer had noticed some decisions being made on IRC in their
research. For this reason, it is very important for researchers to be familiar with the practices used by the
community they are researching.

 11

Figure 1. Sampling Periods for Decision Episodes by Project

In investigating decision-making processes, it is important to take into consideration that the dynamics of
decision-making in community-based FLOSS projects develop over time due to the nature of participation
among voluntary community members. Benbya and Belbaly (2010) show that both the type of participation
and the level of effort by the individuals differ based on their motivation to gain knowledge on a specific
area. Further, the type of individual’s participation to the decision-making process may change based on
how much knowledge they have in an area. Accordingly, sampling of decision episodes was stratified by
time: we chose 20 episodes from the beginning, middle and end periods of each project7 based on a
concern that the decision-making process might be different at different stages of the software development
(e.g., initial collaboration vs. a more established team). However, χ2 tests on the coded data (described
below) showed no significant differences (χ2 = 4.288, df=4, p=0.368) in decision processes across the
different time periods, so we combined all episodes for each project for our analysis. Figure 1 depicts the
sampling periods for decision episodes by project.

The result of this initial coding process was a collection of 300 decision episodes, each including a number
of messages with a trigger and (when present), one or more decision announcement(s). The sample size
was chosen to balance analysis feasibility with sufficient power for comparisons. With 60 episodes per
project, we have reasonable power for comparison across projects while keeping the coding effort feasible.

4.2 Coding Scheme Development for Decision Processes
Once we had a sample of decision episodes, we content analyzed them by coding the segments of text
that embodied the decision-making steps to identify decision-making process in each episode. The coding
scheme was developed deductively in two steps. First as noted above, we adopted the Decision Functions
Coding System (DFCS) developed by (Poole & Roth, 1989b). This coding system uses as the primary unit
of coding the “functional move”, which is defined as “the function or purpose served by a particular segment
of the conversational discourse” (Wittenbaum et al., 2004). Functional moves have been used extensively
to understand the nature of interaction in both face-to-face and computer-mediated environments (Herring,
1996; Poole & Holmes, 1995; Poole, Seibold, & McPhee, 1985). However, few studies have used functional
move to analyze complex, asynchronous, text-based environments such as email, bulletin boards or

7 For each project, the beginning and the ending periods were the first and last 20 decision episodes found as of

the time of data collection (i.e., from the start of the project’s on-line presence to the most recent period). The
middle period for each project consisted of 20 episodes surrounding a major software release approximately
halfway between the beginning and ending periods. We chose to sample around a release period because
making a release is one of the key team decisions for a FLOSS project.

 12

threaded discussion fora. We used functional moves to identify the function of messages in each episode.
Note that a single message might include zero, one or multiple functional moves.

In DFCS, functional moves for decision making include steps for problem analysis and problem critique;
orientation and process reflection; solution analysis, design, elaboration, evaluation and confirmation; and
other conversational moves such as simple agreement. To use the DFCS for decision making, we first
sorted the decision activities according to Mintzberg, et al.’s (1976) proposed decision-making process.
The result is an “IDEA” framework with four overall phases, namely decision identification (I), development
(D), evaluation (E) and announcement (A). Each phase includes one or more specific functional moves.

Second, the scheme was revised to adapt to the FLOSS setting. To adapt the scheme, we pilot coded a
sample of 20 episodes and discussed how the scheme applied to the data. As a result of these discussions,
we removed from the coding scheme the functional moves that seemed to not be applicable to the FLOSS
context (such as “screening issues” and “authorizing decisions”) and identified and added levels of detail
that are unique to the FLOSS content that had not been seen in previous studies. Using the revised scheme,
we then coded a further 20 episodes and discussed the results until no new patterns emerged. The details
of the revision and the final revised coding scheme are given in Appendix 1.

According to this coding scheme, when the coders observed a perfectly rational decision-making process,
the decision went through all of the four phases represented by the following sequential activities:

(I) In the identification stage, the FLOSS team members first identify an opportunity for decision-making
(I-1), such as determining a need for a fix. The team members exchange information to understand the
underlying problems (I-2).

(D) The development stage may start by discussing how such problems are generally resolved (D-1).
Team members either look for existing solutions (D-2) or try to design a specific solution for the problem
(D-3).

(E) At the evaluation stage, team members evaluate the options identified in the previous stage, either by
sharing their general evaluative opinions (E-1) or by testing the solutions and reporting the outcomes (E-
2). Sometimes a team member initiates voting to determine the final solution or asks confirmation for a
proposed solution (E-3).

(A) Finally, in the announcement stage, the final team decision on how the issue will be solved is presented
to the group (A-1).

Figure 2 provides an example of how these functional moves were coded based on an example from the
Gaim project. This process went through all four phases of identification, development, evaluation and
announcement consecutively, however making loops back twice from the evaluation stage to the previous
development phase. While many dynamic decisions loop back almost at every stage, for simplicity, we
chose to show an example where only two loop-backs happened.

Once we had a coding scheme established, two analysts independently coded the functional moves in the
collected decision episodes, and then compared their results. The initial coding revealed about 80%
agreement. Discrepancies were discussed until the analysts fully agreed on each code. After all
disagreements were resolved, the coding was repeated until the analysts fully agreed on all coded
segments. This iterative coding process took about one month. The pairwise inter-coder reliability reached
85% and 80% respectively on decision triggers and decision announcements.

A problem in analyzing process data is that at the most detailed level, processes can show great variability,
making it hard to find theoretically meaningful patterns. To address this problem, we clustered the 300
coded decision episodes along the following two dimensions based on the sequences of moves
represented in the episodes. The first dimension is the coverage, referring to the extent that theoretically-
identified decision-making phases are observed in the public process. The second dimension is termed as
cyclicity, i.e., whether the decision episodes progressed linearly through the phases as in a normative model
or looped through phases repeatedly as suggested by researchers such as Mintzberg et al. (1976). From
here on, we refer to these two categories as linear and iterative decision-making processes respectively.

 13

Figure 2 An Example Illustrating How a Decision Episode is Coded for Functional Moves

 14

4.3 Findings: Qualitative Analysis of Decision-Making Patterns
Following the procedure described in section 4.2, we sorted the 300 decision-making episodes into 5
clusters according to the number of phases. We labeled these processes as short-cut, implicit-development
(implicit-D), implicit-evaluation (implicit-E), complete, and abandoned decision processes (i.e., lacking a final
decision announcement). Figure 3 depicts the patterns of the five processes. The dashed lines in the figures
indicate points at which there might be loops, leading to iterative decision process. The loop from decision
announcement to previous phases indicates that one or more intermediate decisions were announced
before the decision was finalized.

a. a. Short-cut

b. b. Implicit-development

 c. Implicit-evaluation

 d. Complete

 e. Abandoned

Figure 3. Five Decision-Making Processes Identified based on the Data

Short-Cut (Figure 3a). This process represents the simplest pattern, in which a decision is made right after
opportunity recognition and perhaps a brief problem diagnosis, with no explicit solution development or
evaluation. Examples of this kind are often observed in the bug report or problem-solving discussions in
software-modification decisions. For example, in one decision episode in the WebERP project, a user
reported a bug (code I-1, Decision Recognition), which was quickly followed by the response of an
administrator that he “just fixed it” (A-1, Decision Announcement), with no further discussion or evaluation.
While there is an absence of team input, we argue that these decisions are still team decisions, for two
reasons: 1) Since all team members can view the bug fix and reverse it if they see it as inappropriate, a lack
of reversal indicates an implicit consensus on the proposed course of action; and 2) the decision (e.g., a
bug fix) affects the shared team output and binds the team to a future course of development (i.e., there are
team consequences).

Implicit-D (Figure 3b). In this process, the solution development phase is skipped, which does not mean
that a solution was not developed, but rather that there is a lack of evidence of the development phase in
the online discussions. For example, in these episodes, the person who brings up an issue may have already
done a diagnosis and provides a solution together with the issue. The subsequent discussions concentrate
on evaluating the feasibility or the benefits and disadvantages of the suggested implementation, rather than
looking for more alternative solutions. For example, in the aMSN project, a user wrote a message
mentioning a discovered problem and providing a patch (I-1, Decision recognition): “Unfortunately, the
gnomedock was segfaulting. I am attaching a patch that fixes most (if not all) of the problems.” An
administrator mentioned that he had the same problem, and that he then applied the user’s patch on his
computer, which resolved the problem (E-2, Solution evaluation-action). The same administrator then said,
“I’ll add patched version to CVS and thank the guy who sent the patch” (A-1, Decision Announcement). In
this example, the steps of solution analysis, search and design were not visible in the text. However, these
steps were conducted at least by the user who sent the patch, and possibly by others who did not feel it
was necessary to report their progress.

 15

Implicit-E (Figure 3c). The third type of decision-making process is called “Implicit-Evaluation”, indicating a
lack of online evidence of evaluative discussion. In these episodes, a decision is announced directly after
the solution alternatives are generated without explicit evaluation of the alternatives. For example, in aMSN,
an administrator brought up a technical issue (I-1, Decision recognition) and proposed three solutions (D-3,
Solution design). Most of the subsequent messages concentrated on determining whether the problem was
one for the aMSN project or just a problem from its supporting software such as a KDE problem (I-2,
Diagnosis). After some discussion and testing, members confirmed it was an aMSN tray icon problem (I-2,
Diagnosis). The team attention then returned to suggesting alternative solutions (D-3, Solution design) and
the problem was quickly fixed (A-1, Decision announcement).

Complete (Figure 3d). In the “complete decision-making process” episodes, the team goes through all
phases of decision-making, either in a linear sequence without looping back to previous phases or in an
iterative sequence with loops back to previous phases, sometimes in every phase. The linear complete
processes most closely resemble the rational approach described in earlier studies. For example, in the Fire
project, a user reported a build failure (I-1, Decision identification). The administrator pointed out the problem
immediately (I-2, Diagnosis) and provided a solution (D-3, Solution design). The user tested and confirmed
the usability of the solution (E-2, Solution evaluation-action). Then the administrator promised to commit the
code into CVS soon (A-1, Decision announcement).

Iterative processes were observed when the issue was more complex. The complexity of the issue stems
from the fact that its diagnosis and resolution are tied to other sub-issues. As the sub-issues are interrelated,
discussions may loop back to any previous phase at any time. It might sometimes be possible to find another
trigger that could be interpreted as starting a new decision episode within these issues. However, since the
issues are interrelated, it would not be faithful to the original source of the issue to treat them as different
episodes. For example, in OFBiz project, one administrator started a thread about how to design a workflow
and based on which specifications. His first question was “The first was, which activity should we start with,
and how do we know when we're done?” (I-1, Decision recognition). He then went on to show that he looked
for existing solutions: “I did find examples of workflows at WfMC including mail room, order processing, and
various other things. It appears that the first activity for a given process is the first in the list.” (D-2, Solution
search). He then described how the solution would apply to this setting and evaluated this option, indicating
it may be an easy-to-change temporary solution by saying “At run time it will already be there so if another
spec does it differently, or we find another way (the correct way?), it will be easier to change.” (E-1, Solution
evaluation-option). Another administrator took the process back to the development stage by writing an
example of how the start activities might work (D-3, Solution design) and then evaluated this option. The
first administrator then said “What you said about starting and ending makes a lot of sense. That's a good
idea of specifying a default start activity, and for each activity specifying whether or not it can be a start
activity.” (E-1, Solution evaluation, opinion) and announced the solution (A-1, Decision announcement).
However, then a user jumped in to recommend an alternate solution, taking the team from decision
announcement back to the solution development stage. When the administrator mentioned the user’s
solution would not work, the user improved his solution, leading to several loops of development and
evaluation before a solution was agreed on.

Abandoned (Figure 3e). We called the final category “Abandoned decision-making process”. In these
processes, no decision was announced by the end of the observed decision episode. Abandonments may
occur in any phase of discussion and happen for various reasons. A decision-making process may be
abandoned during the identification phase due to a disagreement on whether there is a real problem or if
there is a need to fix it. It may be abandoned during the development phase due to disagreement about the
merits of different technical approaches and concerns. Abandonment in the evaluation phase can be due
to multiple parties pursuing individual interests. For example, in the Gaim project, an administrator
suggested adding audio functionality to the product (I-1, Decision recognition). Several core members
challenged the availability of this functionality (I-2, Diagnosis). The discussions revealed two different
preferred solutions—releasing a stable version with minor changes or releasing an unstable version with a
major innovation (D-1, Solution analysis). Both sides extensively examined the current solutions, took
relevant consequences into account and provided feasible suggestions (D-3, Solution design, E-1, Solution
evaluation-opinion). However, after 11 days of discussion, we found no final decision announcement (even
searching the list for months after).

Table 2 shows the distribution of the five decision-making processes across the 300 decision episodes.
From the table we can see that, only 38% of decisions episodes analyzed went through all four phases
(labeled as “Complete”), while 52% of the discussions reached a decision while skipping one or two phases

 16

(Short-cut, Implicit-D or Implicit-E). No decision was reached in the remaining 10% of cases (Abandoned).
In 23% of the decision episodes, the team decided right after the decision trigger was recognized (short-cut
process). While 28% of decisions were made without the evaluation phase (Implicit-E process), only 1% of
the decisions were made without a visible development phase (Implicit-D process).

Table 2. Count of Observed Decision Processes for All Episodes
 Short-cut Implicit-D Implicit-E Complete Abandoned Total
Linear 56 (19%) 0 (0%) 38 (13%) 8 (3%) 14 (5%) 119 (39%)
Iterative 14 (5%) 4 (1%) 45 (15%) 105 (35%) 16 (5%) 181 (61%)
Total 70 (23%) 4 (1%) 83 (28%) 113 (38%) 30 (10%) 300 (100%)

When we looked for differences in the patterns exhibited by the ERP versus IM projects, we have not
observed any systematic difference in the decision processes. χ2 tests8 (Table 3 and Table 4) showed
similar patterns in the use of different decision processes between IM and ERP projects for both tactical
decisions (χ2 =1.644, p = 0.649) and strategic decisions (χ2 = 6.521, p = 0.100). The different types of
knowledge required by the ERP FLOSS developers did not seem to cause them to use different phases or
functional moves than those explained above and provided in the coding scheme in Appendix 1. Therefore,
we concluded that the type and extent of knowledge required for the software does not influence the decision
processes used by the FLOSS development team.

Table 3. Distribution of Decision-Making Processes between IM and ERP
Projects for Tactical Decisions

 Short-Cut Implicit-E Completed Abandoned Total

IM 37 (27%) 44 (32%) 45 (32%) 13 (9%) 139(100%)
ERP 17 (22%) 27 (34%) 30 (38%) 5 (6%) 79 (100%)
 54 (25%) 71 (33%) 75 (34%) 18 (8%) 218 (100%)
χ2 = 1.644, df = 3, p = 0.649

Table 4. Distribution of Decision-Making Processes between IM and ERP

Projects for Strategic Decisions
 Short-Cut Implicit-E Completed Abandoned Total
IM 6 (16%) 4 (11%) 24 (63%) 4 (10%) 38(100%)
ERP 10 (25%) 8 (20%) 14 (35%) 8 (20%) 40 (100%)
 16 (21%) 12 (15%) 38 (49%) 12 (15%) 78 (100%)

 χ 2 = 6.251, df = 3, p = 0.100

Lastly, we clustered the decision-making processes based on the cyclicity. We found that 39% of decisions
followed a linear decision process, while the other 61% included one or more loop backs, following an
iterative decision process.

5 Discussion of Findings & Theoretical Contributions: Multiple
Sequences of Decision-Making Processes in FLOSS Development
In this study, we investigated decision-making process due to the focus of information systems research on
how decision processes are influenced and supported by information technologies (Huber, 1990; Shaikh &
Karjaluoto, 2015). This is true especially for community-based FLOSS projects with internal governance,
where decisions are made virtually, asynchronously, across different time-zones and depending almost
exclusively on information systems (Crowston et al., 2012). The best way of enabling and supporting the
virtual, asynchronous decision-making that spans different geographical locations and time-zones requires
an in-depth understanding of what the decision-making processes are. Only then, the right types of new

8 Since there were only 4 cases of implicit-D episodes, they were excluded from this analysis.

 17

information technologies can be identified that supports the decision processes at hand. Group Support
Systems is a highly funded (by both grants and the industry) subset of Decision Support Systems Research,
which focuses exactly on the area of developing information systems that support the decision-making
process within groups (Arnott, Pervan, & Dodson, 2005). Watson (2018) reminded us that “decision support
systems should enable and boost interdependent decision making, which involves groups of people and
should support all phases of the decision-making process, intelligence, design and choice” (p.375). While
Watson refers to the phases of intelligence, design and choice, we found in FLOSS teams four phases,
which incorporates the distinct subsets of development stage (solution development) and evaluation stage
(evaluation of the developed solutions). Further, we identified noticeable sequences in the decision-making
process such as skipping of phases, and iteration back to earlier phases as described in more detail below.

Our key contribution to decision-making literature is the identification of the five different decision-making
processes observed in community-based FLOSS development teams with internal governance.
Identification of these processes helps fill in the gap in the literature identified by Nelson et al. (2006) on the
lack of investigations regarding the extent to which FLOSS decision mechanisms can be explained using
classical theories from organizational structure. The extant research on FLOSS investigated various
decisions related to the strategic aspects that influence FLOSS developers such as the FLOSS strategy
(Pykäläinen et al., 2009), FLOSS adoption decision and innovation with FLOSS (Maldonado, 2010),
decisions on hybrid business models including FLOSS (Deodhar et al., 2012), company level decisions
such as on strategic decisions (Alspaugh et al., 2010), FLOSS acquisition/adoption decisions (Benlian,
2011; Chengalur-Smith et al., 2010; Marsan et al., 2012), licensing decisions (Singh & Phelps, 2013),
employment contract decisions (Mehra et al., 2011; Mehra & Mookerjee, 2012), pricing decisions (August
et al., 2013; Machado et al., 2017). However, none of these decisions at the company level opened the
black-box of these processes and explicated the decision process sufficiently to provide an input for the
facilitation of these processes. Similarly, the decisions that were investigated at the project level, such as
the decisions that contribute to the FLOSS development processes (e.g., Howison & Crowston, 2014; Wang
et al., 2014; Wei et al., 2014), FLOSS leadership process (Eseryel & Eseryel, 2013) do not explicate the
decisions sufficiently to identify elements of decision-making, that can then be supported with group decision
making technologies. Lastly, the individual level FLOSS research focuses more on the elements that support
individual contribution decision, rather than investigating the decision-making process itself. The
investigated factors that contribute to the individual participation decision include motivation (Benbya &
Belbaly, 2010; Ke & Zhang, 2010; von Krogh et al., 2012), commitment (Bateman et al., 2011; Daniel,
Maruping, et al., 2018), task selection (Howison & Crowston, 2014), community markers (Choi et al., 2015),
lawsuits related to the FLOSS (Wen et al., 2013), to name a few. This stream of research does not
investigate what decision processes individuals go through after they make the decision to participate in
FLOSS, which is what we contribute to the FLOSS literature at the individual level.

We developed two sets of insights from our analysis regarding (1) decision processes and (2) patterns with
which these processes were used. We saw decision-making processes in community-based FLOSS
development with internal governance as having multiple sequences that reflect the unique characteristics
of FLOSS setting. In this research, we identified 5 different decision-making processes varying in both
numbers and sequences of decision-making phases: short-cut, implicit-development, implicit-evaluation,
complete and abandoned processes. Four patterns were observed in the use of these processes: frequent
short-cuts, frequent implicit-evaluation, infrequent implicit-development and many cycles looping back to
previous stages in decision-making. We explain these patterns of different decision-making processes
based on 1) the unique characteristics of FLOSS development and 2) the high level of dependency of
FLOSS decision process on information technologies.

First, we observed that the decision-making processes as exhibited in the discussion fora are unlike those
observed in other decision-making contexts. For example, Mintzberg et al. (1976) argue that the evaluation-
choice of a solution (evaluation in our case) must be included in any decision process. However, in our
study, 23% of the decisions were made without any explicit discussion of solutions (i.e., 70 of 300 decisions
were short-cut). The high frequency of short-cut decisions in what is often described as an open and
participative setting is at first surprising. In addition to short-cut decisions, we found that 28% of decision
episodes (a total of 83 out of 300) followed the “Implicit-Evaluation” process that skips the evaluation phase.
In contrast, only 1% (4 out of 300) followed the “Implicit-Development” process, which includes an evaluation
phase but skips the development phase.

At first, these results seem to be a paradox: open projects that make decisions in a seemingly opaque and
non-participatory fashion. Our finding of high level of reliance on short-cut processes, which is an individual

 18

decision-making process, as a highly common way of making decisions that are binding to the team as a
whole is unique to the group decision-making literature. While we cannot completely rule out the existence
of unarchived offline discussion that contains the missing phases, it appears that the lack of evaluation
phase and other decision-making phases reflects an action orientation for decision making in FLOSS
development teams (Eseryel & Eseryel, 2013): that it is preferable to simply try out a solution rather than
performing detailed evaluation of potential alternatives in advance. This value is reflected in a description
of the Internet Engineering Task Force decision process (part of the cultural heritage of FLOSS): “We
reject: kings, presidents and voting. We believe in: rough consensus and running code” (Clark, 1992, p.
543). The result is a set of decision processes that emphasize making a sufficiently good decision based
on as much collaboration as needed rather than spending too much time for evaluating options to find a
perfect solution through 100% contribution by everyone to the decision.

Secondly, the missing phases may also be an empirical support for the stigmergic coordination in FLOSS
development (Bolici, Howison, & Crowston, 2015). By examining those decision episodes using simpler
decision processes, we found that many of them had mentioned or referred to software codes explicitly in
their discussion. Prior research had proposed that stigmergic coordination makes explicit discussion
unnecessary (Crowston, Østerlund, Howison, & Bolici, 2011; Robles, Merelo, & Gonzalez-Barahona, 2005).
Namely, the shared and transparent nature of the information artifact and the technical ability to reverse
code-submissions in case of disagreements enable the reliance on short-cut decision-making processes.
The short-cut decision-making process is a valuable process for group decision-making when combined
with the IT infrastructure mentioned above in that it eliminates (the cost of) unnecessary communication and
coordination. While the idea of stigmergic coordination has been discussed in prior literature (Crowston et
al., 2011; Robles et al., 2005), no empirical research has been conducted examining this question. With
shared work products and discussion based on asynchronous communication, developers can work
independently to determine and test solutions rather than needing to immediately discuss them with others,
a decoupling that enables distributed voluntary contributors to be effective participants.

Moreover, we found that developers often raised questions about others’ actions based on their knowledge,
leading back to previous phases of decision-making, resulting in a high proportion of cyclic processes (181
out of 300, 61%). While our findings are in line with observation that “IS decisions are often complex and
dynamic” (Boonstra, 2003, p.206), the factors that are previously used to explain this cyclicity, such as
political influences, urgency and necessity (Eisenhardt & Zbaracki, 1992a; Eisenhardt & Zbaracki, 1992b;
Mintzberg et al., 1976), do not seem to apply in this setting. Rather, the dynamism of decision making in the
FLOSS context seems to be an artifact of how FLOSS teams interact using information technologies that
allow for asynchronous communication and collaboration, meaning that anyone can observe and contribute
to a decision in process, even joining later a discussion that has been going on for some time. This pattern
may also reflect the fact that no individual organizes the discussions to follow a normative path, as would
be observed in teams with managers or decision support systems to structure the decision process.

While in organizational settings, the dynamic nature of the decision-making may to an extent indicate
inefficiencies, in an open setting such as FLOSS, where decision-making speed is not necessarily a goal of
the voluntary developers, the process allows participants the opportunity to jump in at any time to contribute
to work and related decisions, thereby increasing the level of cyclicity in FLOSS decision-making. In
conclusion, we suggest that the cyclicity in these teams results from the self-organizing nature of the teams
and the use of asynchronous communication media, rather than the factors that have been suggested to
lead to cycles (such as political factors) in other decision-making teams.

To sum up, consistent with multiple sequence models of decision-making, we found FLOSS development
teams enact various decision-making processes. Further, their decision-making processes display certain
patterns that we attribute to the unique characteristics of FLOSS development and the dependency on
extensive ICT use.

Identification of these processes is important because the decision process used by the group directly
affects group performance. Such an in-depth examination of the microstructures of decision-making
processes compliments existing macro-level research on decision-making (e.g. German, 2003; Raymond,
1998). The frequency and type of decision-making processes used by FLOSS teams can be inputs for future
theory development efforts predicting group performance. For example, quantitative studies can compare
the types of decision processes used and the decision effectiveness (or overall project success).

Lastly, based on the earlier literature, we had expected that FLOSS teams that develop software that require
many different types of external and internal knowledge to use different decision processes than those that

 19

develop software with more generic knowledge requirements. This had influenced our case selection
strategy. However, contrary to our expectation, we did not observe differences in the decision-making
processes used between simple (IM) and complex (ERP) software projects. Thus, our findings suggest that
FLOSS projects tend to adopt similar decision-making processes for decisions regardless of the complexity
and the knowledge requirements of the software developed by the FLOSS communities. This similarity
reflects the observation that the software development process seems to be organized similarly across
projects: using same sets of ICT tools in discussion and implementation spaces, parallel development and
debugging which involve loosely-centralized and gratis contribution from individual voluntary developers
(Feller & Fitzgerald, 2000), resulting in developers selecting similar scope of problems to work on, with
similar decision demands. This finding suggests that the decision processes identified can be generalized
across the whole spectrum of community-based FLOSS projects with internal governance and perhaps to
other kinds of FLOSS as well.

5.1 Limitations and Future Research
At the beginning of this study, we highlighted that there are various types of FLOSS teams that are governed
differently. Our study specifically focused on FLOSS teams that have internal governance, which we called
“community-based FLOSS teams”. These projects have existed for a period of time, they have multiple
participants, and their governance is from within the project team and they require coordination and control
to achieve desired outcome. Therefore, our findings should be tested for FLOSS teams that may have
different types of governance to see if they can be extended to these teams. Specifically, FLOSS teams that
are relatively new, and those teams that are highly institutionalized either because of a non-profit foundation
or those that are formed by companies may show different decision-making dynamics. Therefore, the
decision-making processes we identified should be tested in these two types of FLOSS teams for
generalizability for those settings.

Secondly, we limited our investigation of decision-making processes to the discussion fora. The advantage
of this approach was that it helped us capture both strategic and tactical decision-making processes.
Different communication media may provide different affordances (Volkoff & Strong, 2013). Therefore,
future research should test the five decision-making processes that we have identified in different types of
communication media, such as issue trackers or pull requests that are used by the FLOSS teams. The
numerous communication media that FLOSS teams use include setting up various automated listservs that
automatically send emails whenever a new patch is committed, specialized listservs for individuals working
on translations, updating team website or team wiki, to name a few. Further, issue trackers help coordinate
decisions on technical issues such as a bug report or an enhancement request. Some FLOSS teams use
GitHub, which enables pull requests to create various changes on a branch. Pull requests may be used to
discuss, review and edit various changes that are done on a commit, before these changes are finalized
and committed to the base branch. These pull requests also create opportunities for interaction and
decision-making on a subset of a project.

Since the different communications tools mentioned above have different features, each tool may provide
different affordances, meaning different possibilities for action may be offered to users by different
communication media (Volkoff & Strong, 2013). Some only inform the members of the progress, and
therefore do not include the full interaction needed for team-level decision-making, whereas others, such as
the issue trackers, focus only on technical decisions, and have a unique structure that forces the users to
fill in different fields, and therefore may affect the organization of the decision-making process. GitHub tools
may be more relevant to those people who focus on a subset of the project, such as the website
development, or the development of a specific branch. We expect to see similar decision-making processes
across different media because what we investigated were social practices supported by the information
and communication technologies. Yet, to the extent different communication and coordination media provide
different affordances (Volkoff & Strong, 2013) related to decision-making, they may show slight differences,
therefore the decision-making processes we identified should be tested across different media.

A limitation of this study is the exclusion of synchronous discussion fora, such as IRC, Instant Messaging
or phone calls. We have followed IRC and instant messaging channels of especially the IM projects such
as Gaim before we made the decision to focus on the developers’ fora. Our observations of these channels
informed us that these channels were typically used to clarify programming questions quickly, rather than
making decisions. This observation is the reason why we decided to focus on developers’ fora for
investigating community-level decision making.

 20

We had no way of observing one-to-one IM conversations that happen outside of the publicly shared ones.
Thus, we want to acknowledge that it is possible that some of the steps in the decision-process that we
infrequently observed were in fact carried out by a subgroup using such alternative channels. Future
research should consider the impact of communications synchronous communication channels on
community-level decision making on developers’ fora. However, we would argue that the use of such
channels would not change our main conclusion, namely that many decisions that bind the teams to a
course of action are made without explicit involvement of the entire team in seemingly important phases of
the decision process.

Another limitation of this research is the small sample size (i.e., five projects and 300 decision episodes).
While it enabled us to conduct manual coding and provided us with rich data that increased our
understanding of the decision-making process from different projects, it limited the types of statistical
analysis we could run with our data. For example, we only used two types of FLOSS projects (i.e., IM
projects vs. ERP projects) thus limiting the generalizability of the result. We specifically focused on these
two projects because they represented two extremes on the continuum of variety of knowledge required for
decision-making: While the ERP projects require unique domain knowledge in many areas (such as
accounting, finance, marketing etc.) in addition to technical knowledge on these areas, IM projects require
focus on one area, which many developers experientially have as users of the software.

Nevertheless, the decision processes and relationships we have identified provide the foundation for deeper
exploration and potentially richer explanations of decision-making processes in FLOSS teams. Future
research should apply the framework of this research to a larger and more representative sample of FLOSS
projects.

6 Practical Implications
Three groups of individuals in the practitioner community can benefit from the results of this study:
1) participants and leaders of community-based FLOSS teams; 2) managers and members of companies
who would like to actively contribute to existing community-based FLOSS teams or to develop and support
such teams with independent internal governance; and 3) those who would like to bring to their organizations
the FLOSS model of work, where internally governed small communities, such as those investigated in this
article, collaborate on technical projects.

Understanding decision-making processes also enables the creation of group decision support systems and
other information systems that would fulfill the team requirements. For instance, if FLOSS team members
use applications such as the Algorithmic Autoregulation software (Fabbri et al., 2014) and habitually record
their coding processes as they do their work, this would help explicate the individual decision-processes
that make up the short-cut decisions. Discussion and implementation spaces are especially crucial to the
success and continuity of distributed teams such as FLOSS, which depend on such systems for both task
accomplishment and group maintenance.

Second, the success of FLOSS development has attracted more and more companies’ active participation
(Dahlander & Magnusson, 2008). Companies first need to understand how FLOSS communities operate
before they can be successfully involved in FLOSS development. By understanding the decision-making
processes in FLOSS teams, firms can know better what kind of decision processes would likely be used for
different task types, so they can adjust their behaviors to better contribute to FLOSS development.

Third, though this research studied decision-making processes in FLOSS development teams, many of our
findings can be applied to self-organizing organizational virtual teams, and similar open organizations more
generally. Indeed, Markus, Manville and Agres (2000) argue that,

Although managers in industries other than software development may prefer more traditional styles of
management, they should remember that the world is changing, and workers are changing along with it. In
a labor force of volunteers and virtual teams, the motivational and self-governing patterns of the open
source movement may well become essential to business success (p. 25).

The results of this study offer several practical insights that can benefit organizations in decision making in
a distributed, self-organizing, open work environment. For example, managers should consider
implementing tools that enable team members to coordinate through their work product, and augment these
with discussion tools in a way that mirrors the FLOSS practice. For example, co-workers may be able to
substitute examination of shared documents (e.g., with tools such as Google Documents or Lotus Notes)
for extensive discussion of their contents in the discussion space and rely on self-organized contribution to

 21

the shared work rather than detailed negotiation about who will take on which task. In this way the apparent
advantages of FLOSS development may become more widely available.

7 References
Aksulu,	A.,	&	Wade,	M.	R.	(2010).	A	comprehensive	review	and	synthesis	of	open	source	research.	Journal	of	

the	Association	for	Information	Systems,	11(11),	576–656.		
Allen,	J.	P.	(2012).	Democratizing	business	software:	Small	business	ecosystems	for	open	source	applications.	

Communications	of	the	Association	for	Information	Systems,	30(28),	483-496.		
Almarzouq,	M.	(2005).	Open	source:	Concepts,	benefits,	and	challenges.	Communications	of	the	Association	for	

Information	Systems,	16(37),	756-784.		
Alspaugh,	T.	A.,	Scacchi,	W.,	&	Asuncion,	H.	U.	(2010).	Software	licenses	in	context:	The	challenge	of	

heterogeneously-licensed	systems.	Journal	of	the	Association	for	Information	Systems,	11(11/12),	730-
755.		

Andriole,	S.	J.	(2012).	Seven	indisputable	technology	trends	that	will	define	2015.	Communications	of	the	
Association	for	Information	Systems,	30(1),	61-72.		

Annabi,	H.,	Crowston,	K.,	&	Heckman,	R.	(2008,	14–17	December).	Depicting	what	really	matters:	Using	
episodes	to	study	latent	phenomenon.	Paper	presented	at	the	International	Conference	on	Information	
Systems	(ICIS),	Paris,	France.	

Arnott,	D.,	Pervan,	G.,	&	Dodson,	G.	(2005).	Who	Pays	for	decision	support	systems	research?	Review,	
directions,	and	issues.	Communications	of	the	Association	for	Information	Systems,	16(1),	356-380.		

August,	T.,	Shin,	H.,	&	Tunca,	T.	I.	(2013).	Licensing	and	competition	for	services	in	open	source	software.	
Information	Systems	Research,	24(4),	1068–1086.		

Barcellini,	F.,	Détienne,	F.,	&	Burkhardt,	J.-M.	(2014).	A	situated	approach	of	roles	and	participation	in	Open	
Source	Software	Communities.	Human–Computer	Interaction,	29(3),	205-255.		

Barrett,	M.,	Heracleous,	L.,	&	Walsham,	G.	(2013).	A	rhetorical	approach	to	IT	diffusion:	Reconceptualizing	the	
ideology-framing	relationship	in	computerization	movements.	MIS	Quarterly,	37(1),	201-220.		

Bateman,	P.	J.,	Gray,	P.,	&	Butler,	B.	S.	(2011).	The	impact	of	community	commitment	on	participation	in	online	
communities.	Information	Systems	Research,	22(4),	841–854.		

Benbya,	H.,	&	Belbaly,	N.	(2010).	Understanding	developers'	motives	in	open	source	projects:	A	multi-
theoretical	framework.	Communications	of	the	Association	for	Information	Systems,	27(30),	589-610.		

Benlian,	A.	(2011).	Is	traditional,	open-source,	or	on-demand	first	choice?	Developing	an	AHP-based	
framework	for	the	comparison	of	different	software	models	in	office	suites	selection.	European	
Journal	of	Information	Systems,	20(5),	542–559.		

Bolici,	F.,	Howison,	J.,	&	Crowston,	K.	(2015).	Stigmergic	coordination	in	FLOSS	development	teams:	
Integrating	explicit	and	implicit	mechanisms.	Cognitive	Systems	Research.	

Boonstra,	A.	(2003).	Structure	and	analysis	of	IS	decision-making	processes.	European	Journal	of	Information	
Systems,	12(3),	195–209.		

Chaudhari,	S.,	&	Ghone,	A.	(2015).	ERP	software	market	by	deployment	and	function.	High	Tech,	Enterprise	&	
Consumer	IT.		

Chengalur-Smith,	I.,	Sidorova,	A.,	&	Daniel,	S.	L.	(2010).	Sustainability	of	free/libre	open	source	projects:	A	
longitudinal	study.	Journa	of	the	Association	for	Information	Systems,	11(11/12),	657-683.		

Choi,	N.,	Chengalur-Smith,	I.,	&	Nevo,	S.	(2015).	Loyalty,	ideology,	and	identification:	An	empirical	study	of	the	
attitudes	and	behaviors	of	passive	users	of	open	source	software.	Journal	of	the	Association	for	
Information	Systems,	16(8),	674-706.		

Chua,	C.	E.	H.,	&	Yeow,	A.	Y.	K.	(2010).	Artifacts,	actors,	and	interactions	in	the	cross-project	coordination	
practices	of	open-source	communities.	Journal	of	Strategic	Information	Systems,	11(12),	838-867.		

Clark,	D.	D.	(1992).	A	Cloudy	Crystal	Ball:	Visions	of	the	Future.	Paper	presented	at	the	Twenty-Fourth	Internet	
Engineering	Task	Force,	Cambridge,	MA.		

Colombo,	M.	G.,	Piva,	E.,	&	Rossi-Lamastra,	C.	(2014).	Open	innovation	and	within-industry	diversification	in	
small	and	medium	enterprises:	The	case	of	open	source	software	firms.	Research	Policy,	43(5),	891–
902.	doi:10.1016/j.respol.2013.08.015	

Crowston,	K.,	Østerlund,	C.,	Howison,	J.,	&	Bolici,	F.	(2011).	Work	as	coordination	and	coordination	as	work:	A	
process	perspective	on	FLOSS	development	projects.	Paper	presented	at	the	Third	International	
Symposium	on	Process	Organization	Studies,	Corfu,	Greece.		

Crowston,	K.,	Wei,	K.,	Howison,	J.,	&	Wiggins,	A.	(2012).	Free/libre	open	source	software	development:	what	
we	know	and	what	we	do	not	know.	ACM	Computing	Surveys,	44(2),	7:1-7:35.		

 22

Dahlander,	L.,	&	Magnusson,	M.	(2008).	How	do	Firms	Make	Use	of	Open	Source	Communities?	Long	Range	
Planning,	41(6),	629-649.		

Daniel,	S.,	Midha,	V.,	Bhattacherjee,	A.,	&	Singh,	S.	P.	(2018).	Sourcing	knowledge	in	open	source	software	
projects:	The	impacts	T	of	internal	and	external	social	capital	on	project	success.	Journal	of	Strategic	
Information	Systems,	27,	237–256.		

Daniel,	S.,	&	Stewart,	K.	(2016).	Open	source	project	success:	Resource	access,	flow,	and	integration.	Journal	of	
Strategic	Information	Systems,	25,	159–176.		

Daniel,	S.	L.,	Maruping,	L.	M.,	Cataldo,	M.,	&	Herbsleb,	J.	(2018).	The	impact	of	ideology	misfit	on	open	source	
software	communities	and	companies.	MIS	Quarterly,	42(4),	1069-1096.		

de	Laat,	P.	B.	(2007).	Governance	of	open	source	software:	State	of	the	art.	Journal	of	Management	and	
Governance,	11(2),	165-177.		

Deodhar,	S.	J.,	Saxena,	K.	B.	C.,	Gupta,	R.	K.,	&	Ruohonen,	M.	(2012).	Strategies	for	software-based	hybrid	
business	models.	Journal	of	Strategic	Information	Systems,	21(4).		

Di	Tullio,	D.,	&	Staples,	D.	S.	(2013).	The	Governance	and	Control	of	Open	Source	Software	Projects.	Journal	of	
Management	Information	Systems,	30(3),	49-80.		

Eisenhardt,	K.	M.,	&	Zbaracki,	M.	J.	(1992a).	Strategic	decision	making.	Strategic	Management	Journal,	13(52),	
17-37.		

Eisenhardt,	K.	M.,	&	Zbaracki,	M.	J.	(1992b).	Strategic	decision	making.	Strategic	Management	Journal,	13,	17–
37.		

Eseryel,	U.	Y.,	&	Eseryel,	D.	(2013).	Action-embedded	transformational	leadership	in	self-managing	global	
information	technology	teams.	The	Journal	of	Strategic	Information	Systems,	22(2),	103-120.		

Fabbri,	R.,	Fabbri,	R.,	Vieira,	V.,	Penalva,	D.,	Shiga,	D.,	Zambianchi,	L.,	.	.	.	Thumé,	G.	S.	(2014).	The	algorithmic	
autoregulation	software	development	methodology.	Revista	Eletrônica	de	Sistemas	de	Informação,	
12(3),	paper	2.		

Feller,	J.,	Finnegan,	P.,	&	Nilsson,	O.	(2011).	Open	innovation	and	public	administration:	transformational	
typologies	and	business	model	impacts.	European	Journal	of	Information	Systems,	20,	358-374.		

Feller,	J.,	&	Fitzgerald,	B.	(2000).	A	framework	analysis	of	the	open	source	software	development	paradigm.	
Paper	presented	at	the	Proceedings	of	the	twenty	first	international	conference	on	Information	
systems,	Brisbane,	Australia.	

Fitzgerald,	B.	(2006).	The	transformation	of	Open	Source	Software.	MIS	Quarterly,	30(4).		
Gacek,	C.,	&	Arief,	B.	(2004).	The	many	meanings	of	Open	Source.	IEEE	Software,	21(1),	34–40.		
German,	D.	M.	(2003).	The	GNOME	project:	A	case	study	of	open	source,	global	software	development.	

Software	Process:	Improvement	and	Practice,	8(4),	201–215.		
Glass,	R.	L.	(2003).	Facts	and	fallacies	of	software	engineering.	Boston:	Pearson	Education.	
Guzzo,	R.	A.,	&	Salas,	E.	(1995).	Team	Effectiveness	and	Decision	Making	in	Organizations.	San	Francisco,	CA:	

Jossey-Bass.	
Hackman,	R.	(1990).	Groups	that	work	(and	those	that	don’t):	Creating	conditions	for	effective	teamwork.	San	

Francisco:	Jossey-Bass.	
Haddara,	M.	(2018).	ERP	systems	selection	in	multinational	enterprises:	A	practical	guide.	International	

Journal	of	Information	Systems	and	Project	Management,	6(1),	43-57.		
Herring,	S.	C.	(Ed.)	(1996).	Computer-Mediated	Communication:	Linguistic,	Social,	and	Cross-Cultural	

Perspectives.	Philadelphia:	John	Benjamins.	
Howison,	J.,	&	Crowston,	K.	(2014).	Collaboration	through	open	superposition:	A	theory	of	the	open	source	

way.	MIS	Quarterly,	38(1),	29-50.		
Huber,	G.	P.	(1990).	A	Theory	of	the	Effects	of	Advanced	Information	Technologies	on	Organizational	Design,	

Intelligence,	and	Decision	Making.	The	Academy	of	Management	Review,	15(1),	47-71.		
Ke,	W.,	&	Zhang,	P.	(2010).	The	effects	of	extrinsic	motivations	and	satisfaction	in	open	source	software	

development.	Journal	of	the	Association	for	Information	Systems,	11(12),	784-808.		
Keen,	P.	G.	W.,	&	Cummins,	J.	J.	(1994).	Networks	in	Action.	Belmont,	California:	Wadsworth.	
Kerr,	N.	L.,	&	Tindale,	R.	S.	(2004).	Group	performance	and	decision	making.	Annual	Review	of	Psychology,	55,	

623–655.	
Kiesler,	S.,	&	Sproull,	L.	(1992).	Group	Decision	Making	and	Communication	Technology.	Organizational	

Behavior	and	Human	Decision	Processes,	52,	96-123.		
Love,	J.,	&	Hirschheim,	R.	(2017).	Crowdsourcing	of	information	systems	research.	European	Journal	of	

Information	Systems,	26,	315-332.		
Machado,	F.	S.,	Raghu,	T.	S.,	Sainam,	P.,	&	Sinha,	R.	(2017).	Software	piracy	in	the	presence	of	open	source	

alternatives.	Journal	of	the	Association	for	Information	Systems,	18(1),	1-21.		

 23

Macredie,	R.	D.,	&	Mijinyawa,	K.	(2011).	A	theory-grounded	framework	of	Open	Source	Software	adoption	in	
SMEs.	European	Journal	of	Information	Systems,	20,	237–250.		

Maldonado,	E.	(2010).	Process	of	Introducing	FLOSS	in	the	Public	Administration:	The	Case	of	Venezuela.	
Journal	of	the	Association	for	Information	Systems,	11,	756-783.		

Mann,	C.	(2002).	Why	software	is	so	bad.	Technology	Review(July-August),	32-38.		
Markus,	M.	L.,	Manville,	B.,	&	Agres,	E.	C.	(2000).	What	makes	a	virtual	organization	work?	Sloan	Management	

Review,	42(1),	13-26.		
Marsan,	J.,	Pare,	G.,	&	Beaudry,	A.	(2012).	Adoption	of	open	source	software	in	organizations:	A	socio-cognitive	

perspective.	Journal	of	Strategic	Information	Systems,	21,	257–273.		
Mehra,	A.,	Dewan,	R.,	&	Freimer,	M.	(2011).	Firms	as	incubators	of	open-source	software.	Information	Systems	

Research,	22(1),	22-38.		
Mehra,	A.,	&	Mookerjee,	V.	(2012).	Human	capital	development	for	programmers	using	open	source	software.	

MIS	Quarterly,	36(1),	107-122.		
Midha,	V.,	&	Bhattacherjee,	A.	(2012).	Governance	practices	and	software	maintenance:	A	study	of	open	source	

projects.	Decision	Support	Systems,	54(1),	23-32.		
Miller,	K.	(2008).	Organizational	Communication:	Approaches	and	Processes.	Bonston,	MA:	Wadsworth	

Cengage	Learning.	
Mintzberg,	H.,	Raisinghani,	D.,	&	Theoret,	A.	(1976).	The	structure	of	"unstructured"	decision	process.	

Adminstrative	Science	Quarterly,	21(2),	246-275.		
Moon,	J.	Y.,	&	Sproull,	L.	(2000).	Essence	of	distributed	work:	the	case	of	Linux	kernel.	First	Monday,	5(11).		
Morgan,	L.,	Feller,	J.,	&	Finnegan,	P.	(2013).	Exploring	value	networks:	theorising	the	creation	and	capture	of	

value	with	open	source	software.	European	Journal	of	Information	Systems,	22,	569-588.		
Morgan,	L.,	&	Finnegan,	P.	(2014).	Beyond	free	software:	An	exploration	of	the	business	value	of	strategic	open	

source.	Journal	of	Strategic	Information	Systems,	23,	226–238.		
Nelson,	M.,	Sen,	R.,	&	Subramaniam,	C.	(2006).	Understanding	open	source	software:	A	research	classification	

framework.	Communications	of	the	Association	for	Information	Systems,	17(12),	266-287.		
Niederman,	F.,	Davis,	A.,	Greiner,	M.	E.,	Wynn,	D.,	&	York,	P.	T.	(2006a).	A	research	agenda	for	studying	open	

source	I:	A	multi-level	framework.	Communications	of	AIS,	2006(18),	Article	7.		
Niederman,	F.,	Davis,	A.,	Greiner,	M.	E.,	Wynn,	D.,	&	York,	P.	T.	(2006b).	Research	agenda	for	studying	open	

source	II:	View	through	the	lens	of	referent	discipline	theories.	Communications	of	the	Association	for	
Information	Systems,	18(8),	150-175.		

O'Mahony,	S.,	&	Ferraro,	F.	(2004a).	The	emergence	of	governance	in	an	open	source	community.	Academy	of	
Management	Journal,	50(5),	1079-1106.		

O'Mahony,	S.,	&	Ferraro,	F.	(2004b).	Hacking	alone?	The	effects	of	online	and	offline	participation	on	open	
source	community	leadership.	Harvard	Business	School	&	IESE	Business	School.		Retrieved	from		

O'Mahony,	S.,	&	Ferraro,	F.	(2007).	The	emergence	of	governance	in	an	open	source	community.	The	Academy	
of	Management	Journal,	50(5),	1079-1106.	doi:10.5465/AMJ.2007.27169153	

Parr,	A.	N.,	Shanks,	G.,	&	Darke,	P.	(1999).	Identi�cation	of	necessary	factors	for	successful	implementation	of	
ERP	systems.	In	O.	Ngwerryama,	L.	Introna,	M.	Myers,	&	J.	DeGross	(Eds.),	New	Information	
Technologies	in	Organizational	Processes:	Field	Studies	and	Theoretical	Reflections	on	the	Future	of	
Work.	London:	Kluwer	Academic	Publishers.	

Peng,	G.,	&	Dey,	D.	(2013).	A	dynamic	view	of	the	impact	of	network	structure	on	technology	adoption:	The	
case	of	OSS	development.	Information	Systems	Research,	24(4),	1087-1099.		

Poole,	M.	S.	(1983).	Decision	development	in	small	groups	II:	A	study	of	multiple	sequences	in	decision	
making.	Communication	Monographs,	50(3),	206-232.		

Poole,	M.	S.,	&	Baldwin,	C.	L.	(1996).	Developmental	processes	in	group	decision	making.	In	R.	Y.	Hirokawa	&	
M.	S.	Poole	(Eds.),	Communication	and	Group	Decision	Making	(pp.	215-241).	Thousands	Oaks,	CA:	
SAGE.	

Poole,	M.	S.,	&	Holmes,	M.	E.	(1995).	Decision	development	in	computer-assisted	group	decision-making.	
Human	Communication	Research,	22(1),	90–127.		

Poole,	M.	S.,	&	Roth,	J.	(1989a).	Decision	Development	in	Small	Group	IV:	A	typology	of	Group	Decision	Paths.	
Human	Communication	Research,	15(3),	323-356.		

Poole,	M.	S.,	&	Roth,	J.	(1989b).	Decision	development	in	small	groups	iv:	A	typology	of	group	decision	paths.	
Human	Communication	Research,	15(3),	323-356.		

Poole,	M.	S.,	Seibold,	D.	R.,	&	McPhee,	R.	D.	(1985).	Group	decision-making	as	a	structurational	process.	
Quarterly	Journal	of	Speech,	71(1),	74–102.		

 24

Pykäläinen,	T.,	Yang,	D.,	&	Fang,	T.	(2009).	Alleviating	piracy	through	open	source	strategy:	An	exploratory	
study	of	business	software	firms	in	China.	Journal	of	Strategic	Information	Systems,	18,	165–177.		

Raymond,	E.	S.	(1998).	The	cathedral	and	the	bazaar.	First	Monday,	3(3).		
Raymond,	E.	S.	(2001).	The	Cathedral	and	the	Bazaar:	Musings	of	Linux	and	Open	Source	from	an	Accidental	

Revolutionary.	Sebastapol,	CA:	O'Reilly	and	Associates.	
Rettig,	C.	(2007).	The	trouble	with	enterprise	software.	MIT	Sloan	Management	Review,	49(1),	22-27.		
Robles,	G.	(2004).	A	software	engineering	approach	to	libre	software.	Open	Source	Yearbook.		
Robles,	G.,	Merelo,	J.	J.,	&	Gonzalez-Barahona,	J.	M.	(2005).	Self-organized	development	in	libre	software:	a	

model	based	on	the	stigmergy	concept.	ProSim'05,	16.		
Santos,	C.,	Kuk,	G.,	Kon,	F.,	&	Pearson,	J.	(2013).	The	attraction	of	contributors	in	free	and	open	source	software	

projects.	Journal	of	Strategic	Information	Systems,	22(1),	26-45.		
Scacchi,	W.	(2007).	Free/Open	Source	Software	Development:	Recent	Research	Results	and	Methods.	

Advances	in	Computers,	69,	243–295.		
Setia,	P.,	Rajogopalan,	B.,	&	Sambamurthy,	V.	(2012).	How	peripheral	developers	contribute	to	open-source	

software	development.	Information	Systems	Research,	23(1),	144-163.		
Shaikh,	A.	A.,	&	Karjaluoto,	H.	(2015).	Making	the	most	of	information	technology	&	systems	usage:	A	

literature	review,	framework	and	future	research	agenda.	Computers	In	Human	Behavior,	49,	541-566.		
Singh,	P.	V.,	&	Phelps,	C.	(2013).	Networks,	social	influence,	and	the	choice	among	competing	innovations:	

Insights	from	open	source	software	licenses.	Information	Systems	Research,	24(3),	539-560.		
Singh,	P.	V.,	Tan,	Y.,	&	Mookerjee,	V.	(2011).	Network	effects:	The	influence	of	structural	capital	on	open	source	

project	success.	MIS	Quarterly,	35(4),	813-829.		
Singh,	P.	V.,	Tan,	Y.,	&	Youn,	N.	(2011).	A	hidden	markov	model	of	developer	learning	dynamics	in	open	source	

software	projects.	Information	Systems	Research,	22(4),	790-807.		
Sojer,	M.,	&	Henkel,	J.	(2010).	Code	reuse	in	open	source	software	development:	Quantitative	evidence,	

drivers,	and	impediments.	Journal	of	the	Association	for	Information	Systems,	11(12),	868-901.		
Sumner,	M.	(2000).	Risk	Factors	in	Enterprise-wide/ERP	Projects.	Journal	of	Information	Technology(15),	317-

327.		
Ven,	K.,	&	Verelst,	J.	(2011).	An	empirical	investigation	into	the	assimilation	of	open	source	server	software.	

Communications	of	the	Association	for	Information	Systems,	28(9),	117-140.		
Volkoff,	O.,	&	Strong,	D.	M.	(2013).	Critical	realism	and	affordances:	theorizing	IT-associated	organizational	

change	processes.	MIS	Quarterly(37),	819-834.		
von	Krogh,	G.	(2009).	Individualist	and	collectivist	perspectives	on	knowledge	in	organizations:	Implications	

for	information	systems	research.	Journal	of	Strategic	Information	Systems,	18,	119–129.		
von	Krogh,	G.,	Haefliger,	S.,	Spaeth,	S.,	&	Wallin,	M.	W.	(2012).	Carronts	and	rainbows:	Motivation	and	social	

practice	in	open	source	software	development.	MIS	Quarterly,	36(2),	649-676.		
von	Krogh,	G.,	&	von	Hippel,	E.	A.	(2006).	The	promise	of	research	on	open	source	software.	Management	

Science,	52(7),	975–983.		
Wang,	X.,	Kuzmickaja,	I.,	Stol,	K.-J.,	Abrahamsson,	P.,	&	Fitzgerald,	B.	(2014).	Microblogging	in	open	source	

software	development:	The	case	of	Drupal	and	Twitter.	IEEE	Software,	31(4),	72-80.		
Watson,	H.	J.	(2018).	Revisiting	Ralph	Sprague’s	framework	for	developing	decision	support	systems.	

Communications	of	the	Association	for	Information	Systems,	42.		
Watson-Manheim,	M.	B.,	Chudoba,	K.	M.,	&	Crowston,	K.	(2002).	Discontinuities	and	continuities:	A	new	way	to	

understand	virtual	work.	Information,	Technology	and	People,	15(3),	191–209.		
Wei,	K.,	Crowston,	K.,	Li,	N.,	&	Heckman,	R.	(2014).	Understanding	group	maintenance	behavior	in	Free/libre	

open	source	software	projects:	The	case	of	Fire	and	Gaim.	Information	&	Management,	52(3),	297-
309.		

Wen,	W.,	Forman,	C.,	&	Graham,	S.	J.	H.	(2013).	The	impact	of	intellectual	property	rights	enforcement	on	open	
source	software	project	success.	Information	Systems	Research,	24(4),	1131-1146.		

West,	J.,	&	O'Mahony,	S.	(2008).	The	Role	of	Participation	Architecture	in	Growing	Sponsored	Open	Source	
Communities.	Industry	and	Innovation,	15(2),	145-168.		

Wittenbaum,	G.	M.,	Hollingshead,	A.	B.,	Paulus,	P.	B.,	Hirokawa,	R.	Y.,	Ancona,	D.	G.,	Peterson,	R.	S.,	.	.	.	Yoon,	K.	
(2004).	The	functional	perspective	as	a	lens	for	understanding	groups.	Small	Group	Research,	35(1),	
17–43.		

Wood,	R.	E.	(1986).	Task	complexity:	Definition	of	the	construct.	Organizational	Behavior	and	Human	Decision	
Processes,	37(1),	60-82.		

Xiao,	X.,	Lindberg,	A.,	Hansen,	S.,	&	Lyytinen,	K.	(2018).	“Computing”	requirements	for	open	source	software:	A	
distributed	cognitive	approach.	Journal	of	the	Association	for	Information	Systems,	19(12),	1217-1252.		

 25

Appendix 1. The Process of Revising the Coding Scheme from Literature
First, we removed the moves “screening issues” and “authorizing decisions”, which occur frequently in
traditional decision-making contexts but that we found rarely in our context. The first code seemed to be
rare because in the FLOSS context, with distributed leadership, there was not a specific person in charge
of decision-making process who might screen issues as needing or not needing discussion. Instead,
discussions usually started immediately after an alternative was proposed. Similarly, a decision generally
did not need to be authorized by a certain person or institution. In the very few cases when it did, for example,
where a discussed issue needed to be handled by the administrator or the project leader, the authorization
move might have been activated, but due to low occurrences, we decided not to include it in our coding
scheme.

Second, we divided the move “Solution evaluation” into two functional moves: “Solution evaluation-opinion”
and “Solution evaluation-action”. Solution evaluation-opinion refers to giving an opinion on the proposed
option. Solution evaluation-action is an evaluation behavior that is uniquely different in asynchronous
collaboration, where the team members test a proposed solution and post the results of their actions rather
than simply posting opinions (Keen & Cummins, 1994). In a synchronous discussion, participants rarely
have time to take such action during a meeting.

The final coding scheme for stages in the decision-making process is presented below.

Phase Functional Move Explanation Examples from Literature

(I) Identification (I-1) Decision
recognition
routine

This move recognizes an opportunity that
may lead to a decision.

Triggers for software-related decisions may
include whether a fix is needed. Secondly a
patch that is sent to the team may initiate an
opportunity for decisions.

problem analysis (Poole
& Roth, 1989a); decision
recognition (Mintzberg et
al., 1976)

(I-2) Diagnosis This move focuses on understanding the
underlying reasons that cause problems or
create opportunities for decisions. It also
includes asking and providing background
information, such as installation
environment, computer configuration etc.

problem critique (Poole &
Roth, 1989a); diagnosis
(Mintzberg et al., 1976)

 26

Phase Functional Move Explanation Examples from Literature
(D) Development (D-1) Solution

analysis
This move describes the activities trying to
develop its solution in general terms, rather
than providing specific solutions, such as
team rule/norm, criteria and general
directions to guide the solution.

solution analysis (Poole
& Roth, 1989a)

(D-2) Solution
search

This move describes the activities trying to
look for ready-made solutions based on
experiences and existing resources, rather
than designing solution by themselves.

search (Mintzberg et al.,
1976), solution search
(Poole & Roth, 1989a)

(D-3) Solution
design

This move describes the activities designing
and providing specific solutions and
suggestions by themselves, or modifying
the ready-made/existing ones according to
the new context.

design (Mintzberg et al.,
1976), solution
elaboration (Poole &
Roth, 1989a)

(E) Evaluation (E-1) Solution
evaluation-
opinion

This move explicit or implicitly comments on
potential alternatives, based on personal
experiences/ preferences, rather than real
testing/checking.

evaluation-choice
(Mintzberg et al., 1976);
solution evaluation
(Poole & Roth, 1989a)

(E-2) Solution
evaluation-
action

This move explicit or implicitly comments on
potential alternatives, based on actual
testing/checking. It also includes describing
the details how the alternatives are tested
and what results come out of that.

[Emergent code
grounded in the data,
non-existent in the
literature. See the
example below.]

Example
for the Emergent
Code: (E-2)
Solution evaluation-
action

A: Do you remember that bug I told you when you typed into a window and other person
received that messages? …I think we will have to improve the multiple windows fix. I"ve
been thinking of it [Then provides a potential solution D-3:] We should keep two variables for
each window. One should be the list of connected users to that window, and another for the
"last" user in that window….[Provides a code to solve the issue]

B: [Provides “(E-2) Solution evaluation-action” by showing that they have physically tested
the code provided by the Person A]:
I"ve been checking the code, for the moment I"ve found a small error here, at
the end of ccmsn_destroyed_msgwin:
 if { [info exists msg_windows([string tolower ${email})]] } {
look at the order of the] and), it should be
 if { [info exists msg_windows([string tolower ${email}])] } {
so that variable wasn"t existing. I"m going to check a bit more, but do you
think that could be a problem?

(E-3) Solution
confirmation

This move describes the activity to ask for
confirmation or initiate voting.

solution confirmation
(Poole & Roth, 1989a)

(A) Announcement (A-1) Decision
announcement

This move announces the final decision on
team level.

decision product (Wood,
1986)

