
Effective organization for
uncertain collaborations:

Lessons from Free (Libre) and Open Source
Software Development Teams

How can collaborations of serious complexity and value be accomplished working with unreliable partners?
Collaboration is hard enough across organizational, temporal, motivational and geographic discontinuities
without adding discontinuities in effort and commitment amongst the collaborators themselves.
Yet some (not all) Free (Libre) and Open Source Software (FLOSS) development succeeds in building
complex software in situations that begin with highly uncertain future commitment.

James Howison, PhD Candidate
Syracuse University, School of Information Studies
Advisor: Kevin Crowston
Dissertation Proposal
More at james.howison.name & floss.syr.edu

Study Design
• Study full project lifetime of 3 projects using archival evidence

• May take samples over lifetime to reduce load
• BibDesk (participant), Gaim (large and successful), Fire (fails after 4 years)

Arrange all archives (Lists, CVS activity, Bug Trackers) into Episodes linked
by topic made up of Events performed by Person at a Time

• Iteratively reduce episodes, retaining links to archives
• Code episodes for practices described above
• Measure productivity over time (SLOC or features produced)
• Examine timeseries of practices, compare to predictions above and to

productivity measures

• How do FLOSS projects organize to succeed over time?
• How do their challenges and responses change over time?
• Which factors do we need to pay attention to when hoping to apply FLOSS

organization techniques?

Erect Barriers to entry
Institutionalization
Quality ‘walls’(harsh interpersonal language,
especially to ‘out-group’)
Physical meetings test commitment
Faster pacing of work (excludes the non-commited)

Build commitment
Successful interdependencies build trust,
prompting more reliance, mostly dyads
Growth in ‘risky’ reliance: investing effort that
only pays off if others act as expected
Pacing tied to periodic deadlines (release
schedules)

Organize for Accretion
Open licenses ensure that participants can rely on
previous work (can’t be withdrawn)
Low interdependence achieved through deferring tasks,
restructuring actor-actor dependencies to actor-technology
Asynchronous activities with visible archives create
opportunities for help and participation

Practices
Build up over time, rather than replace.
Path dependent organizational cultures

Projects with ‘limited potential markets’ may succeed without facing the challenge of defending

Organizational culture is path dependent Practices build up over time, early practices remain ‘default responses’

Change brings conflict Participant’s mental models of the project and its challenges change at differing rates

Success breeds success Goal accomplishment keeps participants while the application grows in usefulness and attractiveness

Authority
Past contributions and commitment define leaders

Increasing commitment
Application works well enough to be
indispensable

• Degrees of organizational freedom
– Flexibility in goals, tasks, deadlines
– Lack of ‘external audience’
– ‘Flow artifacts’ (low instantiation costs)

Resources for responding

Defending
• Influx of attracted participants threaten bloat and

loss of focus
• Exploitation opportunities threaten ‘social

contract’

Coordinating
• Growing complexity increases

dependencies
• Growing audience demand attention

Attracting
• Autonomy and goal accomplishment linked to

satisfaction and motivation
• Being ‘blocked’ in volunteer work is seriously de-

motivating
• Organize for attraction and retention

Key Challenges
Emergent organization visible in ‘reactions
to situations’, rather than plans and
procedures.

CopingGrowingEmerging
Pilot Study
• Participant observer in BibDesk for three years
• Fully analyzed one month of archives
• 61 Episodes
• Clear evidence of accretion

• Highly independent work
• Relatively short episodes (between releases)
• Complex features deferred until easier to build
• Low ‘risky’ reliance behaviors (only 1 episode)
• Most intra-episode cooperation is problem
solving assistance (helping reliance)

Reliance: Types and responses
• Backward looking reliance

•“I would never have tried this if you hadn’t built the groups feature”
• Helping reliance

•“Can anyone help me understand this?” Often not met, creates
opportunities for peri-synchronous interaction

• ‘Risky’ reliance
• Activity is ‘blocked’ unless others act as expected
•“I’m stuck, can anyone check this file in for me?”
• “Unless SVN is accessible I un-volunteer”

• Responses: Defer task, restructure dependencies (eg SVN, re-factoring
code), build reliability through shared knowledge of motivations (extrisnic)
and institutionalization

