
Project Summary: DHB: Investigating the Dynamics of
Free/Libre Open Source Software Development Teams

Kevin Crowston, Syracuse University (with participation from Polytechnic of Bari, Italy)
Increasingly, organizational work is performed by distributed teams of interdependent

knowledge workers. Such teams have many benefits, but geographic, organizational and social
distance between members makes it difficult for team members to create the shared understand-
ings and social structures necessary to be effective. But as yet, research and practitioner commu-
nities know little about the dynamics of distributed teams, especially not self-organizing ones.
We propose a multi-disciplinary and inter-disciplinary study (social and computer science) in the
context of teams of Free/Libre Open Source (FLOSS) software developers to better understand
the cognitive and social structures that underlie changes in individual and team behaviours in
these teams. Our study addresses the general research question: What are the dynamics
through which self-organizing distributed teams develop and work?

We will study how distributed teams develop shared mental models to guide members’ be-
havior, roles to mediate access to resources, and norms and rules to shape action, as well as the
dynamics by which independent, geographically-dispersed individuals are socialized into these
teams. As a basis for this study, we develop a conceptual framework that uses a structurational
perspective to integrate research on team behaviour, communities of practice and shared mental
models. A key innovation of this proposal is the integration of three methods to investigate these
dynamics: natural language processing and social network analysis of team interactions and
source code analysis. The work will be carried out by a multi-disciplinary team including re-
searchers from the fields of information systems and natural language processing, and with par-
ticipation of an international collaborator at Politechnic of Bari. The research will be guided by
an advisory board of FLOSS developers to ensure relevance and to promote diffusion of our
findings into practice.
Expected intellectual merits

The proposed study will have conceptual, methodological as well as practical contributions.
Developing an integrated theoretical framework to understand the dynamics of a distributed team
will be a contribution to the study of distributed teams. The project will advance knowledge and
understanding of FLOSS development and distributed work more generally by identifying how
these teams evolve and how new members are socialized. Understanding the dynamics of struc-
ture and action in these teams is important to improve the effectiveness of FLOSS teams, soft-
ware development teams, and distributed teams in general. The study fills a gap in the literature
with an in-depth investigation of the practices adopted by FLOSS teams based on a large pool of
data and a strong conceptual framework. Furthermore, we will use several different techniques to
analyze these practices, and thus provide a richer portrait of the dynamics of these development
teams.
Expected broader impacts

The project will benefit society by suggesting ways to strengthen distributed FLOSS teams,
an increasingly important approach to software development. The study will shed light on dis-
tributed work teams more generally, which will be valuable for managers who intend to imple-
ment this novel, technology-supported organizational form in practice. Findings from the study
might also be used to enhance the way computer-mediated communication technologies (CMC)
are used to support distance education or scientific collaboration, which are emerging applica-
tions of distributed teams. In order to improve infrastructure for research, we plan to make our
tools and data available to other researchers. As well, the project involves an international col-
laboration. Such exchanges expand the perspectives, knowledge and skills of both groups of sci-
entists. Finally, the project will promote teaching, training, and learning by providing an
opportunity for students to work on research teams, utilize their competencies and develop new
skills in data collection and analysis.

1

Project Description: DHB: Investigating the Dynamics of
Free/Libre Open Source Software Development Teams

Increasingly, organizational work is performed by distributed teams of interdependent
knowledge workers. Such teams have many benefits, but the geographic, organizational and so-
cial distance between members make it difficult for team members to create the shared under-
standings and social structures necessary to be effective. But as yet, research and practitioner
communities know little about the dynamics of developing distributed teams. These dynamics
are particularly challenging when teams have the autonomy or responsibility to self-organize
(e.g., in teams that span organizations). We propose a multi-disciplinary and inter-disciplinary
(social and computer science) study to better understand the cognitive and social structures that
underlie changes in individual and team behaviours in these teams. Our study addresses the gen-
eral research question: What are the dynamics through which self-organizing distributed
teams develop and work?

Our study will be set in the context of teams of Free/Libre Open Source (FLOSS) software
developers. Revolutionary technologies and ideas have created a more closely linked world with
almost instantaneous transmission of information to feed a global economy. A prominent exam-
ple of this transformation is the emergence of FLOSS (e.g., Linux or Apache). FLOSS is a broad
term used to embrace software developed and released under an “open source” license allowing
inspection, modification and redistribution of the software’s source1. There are thousands of
FLOSS projects, spanning a wide range of applications. Due to their size, success and influence,
the Linux operating system and the Apache Web Server and related projects are the most well
known, but hundreds of others are in widespread use, including projects on Internet infrastruc-
ture (e.g., sendmail, bind), user applications (e.g., Mozilla, OpenOffice) and programming lan-
guages (e.g., Perl, Python, gcc) and even enterprise systems (e.g., eGroupware, Compiere,
openCRX).

Key to our interest is the fact that most FLOSS software is developed by dynamic self-
organizing distributed teams comprising professionals, users [189-191] and other volunteers
working in loosely coupled teams. These teams are close to pure virtual teams in that developers
contribute from around the world, meet face-to-face infrequently if at all, and coordinate their
activity primarily by means of computer-mediated communications (CMC) [160,197]. The teams
have a high isolation index [154] in that most team members work on their own and in most
cases for different organizations (or no organization at all). For most FLOSS teams, distributed
work is not an alternative to face-to-face: it is the only feasible mode of interaction. As a result,
these teams depend on processes that span traditional boundaries of place and ownership. While
these features place FLOSS teams towards the end of the continuum of virtual work arrange-
ments, the emphasis on distributed work makes them useful as a research setting for isolating the
implications of this organizational innovation.

The research literature on software development and on distributed work (summarized below
in Section 1) emphasizes the difficulties of distributed software development, but the apparent
success of FLOSS development presents an intriguing counter-example. What is perhaps most
surprising about the FLOSS development process is that it appears to eschew traditional project
coordination mechanisms such as formal planning, system-level design, schedules, and defined
development processes [8,95]. Furthermore, many (though by no means all) programmers con-
tribute to projects as volunteers, without being paid. Characterized by a globally distributed de-
veloper force and a rapid and reliable software development process, effective FLOSS
development teams somehow profit from the advantages and overcome the challenges of distrib-

1 FLOSS software is usually available without charge (“free as in beer”). Much (though not all) of this

software is also “free software”, meaning that derivative works must be made available under the same
unrestrictive license terms (“free as in speech”, thus “libre”). We have chosen to use the acronym
FLOSS rather than the more common OSS to acknowledge this dual meaning.

2

uted work [5]. The “miracle of FLOSS development” poses a real puzzle and a rich setting for
researchers interested in the work practices of distributed teams. While in many ways unique, the
distributed and self-organizing nature of FLOSS teams represents a mode of work that is becom-
ing increasingly common in many organizations, so results from our study will be broadly appli-
cable.

As well, FLOSS development is an important phenomena deserving of study for itself [67].
FLOSS is an increasingly important commercial phenomenon involving all kinds of software
development firms, large, small and startup. Millions of users depend on FLOSS systems such as
Linux and the Internet, which is heavily dependent on FLOSS tools. However, as Scacchi [173]
notes, “little is known about how people in these communities coordinate software development
across different settings, or about what software processes, work practices, and organizational
contexts are necessary to their success”. Furthermore, large and longitudinal studies of software
development, such as the one conducted by Perry et al. [156], remain rare. As evidenced by the
attached letters of support from FLOSS developers, members of the FLOSS community are
themselves interested learning how to improving their teams’ performance. The proposed re-
search will be guided by an advisory board of FLOSS developers to ensure relevance of our
study to software development and to help promote diffusion of our findings into practice.

To study the dynamics of self-organizing distributed teams, we propose a multi-disciplinary
and inter-disciplinary study that integrates analysis of multiple sources of data using multiple
research methods. We will use a combination of natural language processing (NLP) and social
network analysis (SNA) to analyze large quantities of developer email and chat logs. We will
correlate these findings with analysis of the software structure of the code produced by the teams
to understand the effects of the team dynamics on the teams’ output. FLOSS teams provide a
perfect setting for such a study because large quantities of interaction data and the program
source code are readily available for study. The novel mix of research approaches—seldom
linked—requires a large and multi-disciplinary research team that does not fit well in existing
NSF programs2. The proposed research team includes individuals from multiple research fields
with expertise in the social dynamics of teams, NLP, qualitative text and social network analysis,
and with expertise in FLOSS development. The inter-disciplinary nature of these techniques will
provide a rich and more complete picture of the functioning of these teams and will link the be-
havior of individual members to the outcome of the teams and to their social underpinnings as
they evolve over varying time scales. The proposed work will also make a contribution to the
underlying fields it draws from. For example, developing techniques to analyze chat transcripts
will help progress in NLP field; understanding FLOSS development will contribute to the field
of empirical software engineering and information systems.

The remainder of this proposal is organized into five sections. In section 1, we present the re-
search setting and discuss the challenges faced by FLOSS teams. In section 2, we develop a con-
ceptual framework for our study, using structuration theory [12] as an organizing framework to
integrate theories of shared mental models [27,199], organizational learning [100,132] and team
learning [64]. In section 3, we present the study design, with details of the data collection and
analysis plans. In this section, we describe how our research will integrate social science, empiri-
cal software engineering and natural language processing, and contribute to the improvement of
all three. In section 4, we present the project management plan. We conclude in section 5 by
sketching the intellectual merits and expected broader impacts of our study and by reviewing re-
sults of prior NSF support.

2 Indeed, the first PI has a proposal under review with a similar aim to this one, but since the restrictions

of the traditional NSF program preclude a multi-disciplinary approach, that proposal does not include
NLP techniques, but rather relies on manual analysis of just four projects, drawing on a different mix of
data. While there are certainly synergies between these projects, neither depends on the other for suc-
cess. If both proposals were funded, the results would be complementary rather than overlapping.

3

1. The challenge of distributed software development
Distributed teams are groups of geographically dispersed individuals working together over

time towards a common goal. Though distributed work has a long history [e.g., 147], advances in
information and communication technologies have been crucial enablers for recent developments
of this organizational form [3] and as a result, distributed teams are becoming more popular
[137]. Distributed teams seem particularly attractive for software development because the code
can be shared via the same systems used to support team interactions [145,172].

While distributed teams have many potential benefits, distributed workers face many real
challenges. Watson-Manheim, Chudoba, & Crowston [196] suggest that distributed work is
characterized by numerous discontinuities: a lack of coherence in some aspects of the work set-
ting (e.g., organizational membership, business function, task, language or culture) that hinders
members in making sense of the task and of communications from others [187], or that produces
unintended information filtering [56] or misunderstandings [7]. These interpretative difficulties,
in turn, make it hard for team members to develop shared mental models of the developing pro-
ject [55,65]. A lack of common knowledge about the status, authority and competencies of team
participants can be an obstacle to the development of team norms [10] and conventions [135].

The presence of discontinuities seems likely to be particularly problematic for software de-
velopers [187], hence our interest in distributed software development. Numerous studies of the
social aspects of software development teams [54,101,171,187,195] conclude that large system
development requires knowledge from many domains, which is thinly spread among different
developers [54]. As a result, large projects require a high degree of knowledge integration and
the coordinated efforts of multiple developers [22]. More effort is required for interaction when
participants are distant and unfamiliar with each others’ work [149,175]. The additional effort
required for distributed work often translates into delays in software release compared to tradi-
tional face-to-face teams [96,139]. The problems facing distributed software development teams
are reflected in Conway’s law, which states that the structure of a product mirrors the structure of
the organization that creates it. Accordingly, splitting software development across a distributed
team would be expected to make it hard to achieve an integrated product [95].

In response to the problems created by discontinuities, studies of distributed teams stress the
need for a significant amount of time spent learning how to communicate, interact and socialize
using computer-supported communications tools [24]. Research has shown the importance of
formal and informal coordination mechanisms and information sharing [195] for a project’s per-
formance and quality. Communication can help clarify potential uncertainties and ambiguities
and socialize members with different cultures and approaches into a cohesive team
[77,94,102,105,108]. Successful distributed teams share knowledge and information and create
new practices to meet the task-related and social needs of the members [163]. However, the dy-
namics of knowledge sharing and socialization for distributed teams are still open topics for re-
search [152].
Research on FLOSS development

The growing research literature on FLOSS has addressed a variety of questions. First, re-
searchers have examined the implications of FLOSS from economic and policy perspectives. For
example, some authors have examined the implications of free software for commercial software
companies or the implications of intellectual property laws for FLOSS [e.g., 58,107,117]. Sec-
ond, various explanations have been proposed for why individuals decide to contribute to pro-
jects without pay [e.g., 15,69,87,98,136]. These authors have mentioned factors such as
increasing the usefulness of the software [88], personal interest [88], ideological commitment,
development of skills [130] with potential career impact [88] or enhancement of reputation
[136]. Finally, a few authors have investigated the processes of FLOSS development [e.g.,
160,178], which is the focus of this proposal.

Raymond’s [160] bazaar metaphor is perhaps the most well-known model of the FLOSS
process. As with merchants in a bazaar, FLOSS developers are said to autonomously decide how

4

and when to contribute to project development. By contrast, traditional software development is
likened to the building of a cathedral, progressing slowly under the control of a master architect.
While popular, the bazaar metaphor has been broadly criticized. According to its detractors, the
bazaar metaphor disregards important aspects of the FLOSS process, such as the importance of
project leader control, the existence of de-facto hierarchies, the danger of information overload
and burnout, and the possibility of conflicts that cause a loss of interest in a project or forking
[16,17]. Recent empirical work has begun to illuminate the structure and function of FLOSS de-
velopment teams.

The other major stream of research examines factors for the success of FLOSS in general
terms (though there have been few systematic comparison across multiple projects, e.g., [179]).
The popularity of FLOSS has been attributed to the speed of development and the reliability,
portability, and scalability of the resulting software as well as the low cost
[48,85,116,157,158,184,185]. In turn, the speed of development and the quality of the software
have been attributed to two factors: that developers are also users of the software and the avail-
ability of source code. First, FLOSS projects often originate from a personal need [142,188],
which attracts the attention of other users and inspire them to contribute to the project. Since de-
velopers are also users of the software, they understand the system requirements in a deep way,
eliminating the ambiguity that often characterizes the traditional software development process:
programmers know their own needs [109]. (Of course, over-reliance on this mode of require-
ments gathering may also limit the applicability of the FLOSS model.) Second, in FLOSS pro-
jects, the source code is open to modification, enabling users to become co-developers by
developing fixes or enhancements. As a result, FLOSS bugs can be fixed and features evolved
quickly. Asklund & Bendix [8] note the resulting importance of well-written and easy-to-read
code.

One of the PIs on this proposal, Kevin Crowston, has been active in FLOSS research, sup-
ported by NSF grant IIS 04–14468 ($327,026, 2004–2006), for Effective work practices for Open
Source Software development, which continued SGER IIS 03–41475, ($12,052, 2003–2004).
The initial results of this funding include an analysis of FLOSS teams as virtual organizations
[48], theoretical models of FLOSS team effectiveness [36,38] and leadership [39] and a study of
possible success measures for FLOSS [35,37]. Empirically, Crowston and his team have ana-
lyzed the problems in using data from SourceForge [99], carried out social network analyses to
understand the centralization and the hierarchy of project teams [41,42] and described the role of
face-to-face meetings in FLOSS teams [43]. These earlier grants are aimed at identifying work
practices that characterize effective FLOSS teams. In the research proposed here, we propose to
carry out a larger-scale study of the dynamics of FLOSS teams. We have chosen this new focus
because studies of FLOSS teams (including our own) and of distributed teams more generally
point to the need to understand dynamics of technology-supported self-organizing distributed
teams.
2. Conceptual development

In this section we develop the conceptual framework for our study, building on and adding to
existing literature drawn from multiple disciplines. For this project, we have chosen to analyze
developers as comprising a work team. Much of the literature on FLOSS has conceptualized de-
velopers as forming communities, which is a useful perspective for understanding why develop-
ers choose to join or remain in a project. Other researchers have described them as communities
of practice, which is a useful lens for studying how knowledge and practices are shared (as we
discuss below). However, for the purpose of our study, we view the projects as entities that have
a goal of developing a product, a user base to satisfy and a shared social identity. Project mem-
bers are interdependent in terms of tasks and roles and core members know and acknowledge
each other’s contributions. These aspects of FLOSS projects suggest analyzing them as work
teams. Guzzo and Dickson [84] defined a work team as “made up of individuals who see them-
selves and who are seen by others as a social entity, who are interdependent because of the tasks
they perform as members of a group, who are embedded in one or more larger social system

5

(e.g., community, or organization), and who perform tasks that affect others (such as customers
or coworkers)”. A team differs from a community of practice because members have a shared
output whereas in communities of practice, (e.g., the copier repairmen studied by Orr [153]),
members share common practices, but are individually responsible for their own tasks.
A structurational perspective on team dynamics

To conceptualize the dynamics of these teams and the process of changes within them, we
adopt a structurational perspective. Numerous authors have used a structurational perspective to
support empirical analyses of group changes [11,57,146,150,193], though a discussion of the
merits of each use is beyond the scope of this proposal. Here, we build on the view of structura-
tion presented by Orlikowski [150] and Barley and Tolbert [12]. Structuration theory [74] is a
broad sociological theory that seeks to unite action and structure and to explain the dynamic of
their evolution. We chose this framework because it provides a dynamic view of the relations
between team and organizational structures (i.e., systems of signification, domination and legiti-
mation that influence individual action) and the actions of those that live within, and help to cre-
ate and sustain, these structures. The theory is premised on the duality of structures, meaning that
the structural properties of a social system are both the means and the ends of the practices that
constitute the social system. As Sarason [168] explains, in structuration theory:

“The central idea is that human actors or agents are both enabled and constrained by structures,
yet these structures are the result of previous actions by agents. Structural properties of a social
system consist of the rules and resources that human agents use in their everyday interaction.
These rules and resources mediate human action, while at the same time they are reaffirmed
through being used by human actors or agents.” (p. 48).

Simply put, by doing things, we create the way to do things.
By relating structure and function across time, structuration theory provides a framework for

understanding the dynamics of a team [81]. Barley and Tolbert [12] note that structuration is “a
continuous process whose operations can be observed only through time” (p. 100). Figure 1,
adapted from [12], shows the relation between institution (which the authors use synonymously
with structure) and action, and how both evolve over time. In this figure, the two bold horizontal
lines represent “the temporal extensions of Giddens’ two realms of social structure: institutions
and action,” while the “vertical arrows represent institutional constraints on action” and the di-
agonal arrows, “maintenance or modification of the institution through action” (p.100). As Cas-
sell [32] says, “to study the structuration of a social system is to study the ways in which that
system, via the application of generative rules and resources, in the context of unintended out-
comes, is produced and reproduced through interaction” (p. 119). Thus, our analysis will de-
scribe current team practices (the lower arrow) and current team structures (the upper arrow) and
how these interact (the vertical and diagonal arrows) and change over time. In order to explain
how the teams are evolving, we present the changes as states or stages (e.g., T1, T2 and T3 in the
figure) and highlight the “dislocation of routines” and other temporal disruptions that lead to
these different states [81].

Figure 1. A sequential model of the relation between structure and action [from 12].

6

Conceptualizing structuration in FLOSS teams
To apply structuration as a perspective to conceptualize the dynamics of distributed FLOSS

teams, we first must clarify the types of rules and resources that comprise the structure. For this
work, we consider three kinds of rules and resources that are “encoded in actors’ stocks of prac-
tical knowledge” [12] and “instantiated in recurrent social practice” [151] in the form of interpre-
tive schemes, resources, and norms [12,177]. In the remainder of this section, we elaborate each
of these three aspects of structure as they apply to FLOSS development in particular. We note
that all of these issues apply as well in physically proximal teams but are more difficult to man-
age in the dispersed/distributed teams that are our focus.

Interpretive schemes and structures of signification. Individual actors’ interpretive schemes
create structures of signification and thus influence (and are created by) individual actions. To
describe how these schemes influence action and vice versa, we draw on the literature on the role
of shared mental models in team action. Shared mental models, as defined by Cannon-Bowers et
al. [26], “are knowledge structures held by members of a team that enable them to form accurate
explanations and expectations for the task, and in turn, to coordinate their actions and adapt their
behavior to demands of the task and other team members” (p. 228). Shared mental models are
thus related to transactive memory [93], which describes how individuals know in particular
where to find information. That theory was originally developed to explain the behaviours of in-
timate couples, but recently extended to groups [141] and distributed teams [82,133]. However,
research indicates that transactive memory converges to shared mental models as “individuals
develop a shared conceptualization of ‘who knows what.’” [21]. Yoo & Kanawattanachai [202]
similarly argues that transactive memory can develop to collective mind [199]. In our work, we
therefore build on the broader concept.

Research suggests that shared mental models help improve performance in face-to-face [162]
and distributed teams [180]. Shared mental models can enable teams to coordinate their activities
without the need for explicit communications [44,66]. Without shared mental models, individu-
als from different teams or backgrounds may interpret tasks differently based on their back-
grounds, making collaboration and communication difficult [59]. The tendency for individuals to
interpret tasks according to their own perspectives and predefined routines is exacerbated when
working in a distributed environment, with its more varied individual settings. Research on soft-
ware development in particular has identified the importance of shared understanding in the area
of software development [118,167]. Curtis et al. [55], note that, “a fundamental problem in
building large systems is the development of a common understanding of the requirements and
design across the project team.” They go on to say that, “the transcripts of team meetings reveal
the large amounts of time designers spend trying to develop a shared model of the design”. The
problem of developing shared mental models is likely to particularly affect FLOSS development,
since FLOSS team members are distributed, have diverse backgrounds, and join FLOSS teams in
different phases of the software development process [63,73]. In short, shared mental models are
important as guides to effective individual contributions to, and coordination of the software de-
velopment process.

In emphasizing the duality of structure, the structurational perspective draws our attention to
how shared mental models are products of, as well as guides to, action. Walton and Hackman
[194] identify an interpretive function of teams, which is to help members create a consistent so-
cial reality by developing shared mental models. To identify specific actions that can help to
build shared mental models, we turn to Brown and Duguid [23], who identify the importance of
socialization, conversation and recapitulation. First, new members joining a team need to be so-
cialized into the team to understand how they fit into the process being performed through a
process of socialization, e.g., by following a “joining script” [192]. Members need to be encour-
aged and educated to interact with one another to develop a strong sense of “how we do things
around here” [93]. Barley and Tolbert [12] similarly note that socialization frequently “involves
an individual internalizing rules and interpretations of behaviour appropriate for particular set-
tings” (p. 100). Second, conversation is critical in developing shared mental models. It is difficult

7

to build shared mental models if people do not talk to one another and use common language
[118]. Meetings, social events, hallway conversations and electronic mail or conferencing are all
ways in which team members can get in touch with what others are doing and thinking (though
many of these modes are not available to distributed teams). Finally, Brown and Duguid [23]
stress the importance of recapitulation. To keep shared mental models strong and viable, impor-
tant events must be “replayed”, reanalyzed, and shared with newcomers. The history that defines
who we are and how we do things around here must be continually reinforced, reinterpreted, and
updated.

Most studies on shared mental models remain conceptual [141]. A few empirical studies in
this area [e.g., 118,162] have investigated the relationship between team or organizational factors
and the presence of shared mental models. This study will investigate the process through which
members of distributed teams develop shared mental models. This will be accomplished through
the analysis of interaction data for evidence of socialization, conversations and recapitulation of
ideas about task, team members, attitudes, and beliefs.

Resources and structures of domination. The control of resources is the basis for power and
thus for structures of domination. For software development, material resources would seem to
be less relevant, since the work is intellectual rather than physical and development tools are
readily available, thanks to openly available FLOSS development systems such as SourceForge
[9] (http://sourceforge.net/) and Savannah (http://savannah.gnu.org/). Furthermore, most FLOSS
teams have a stated ethos of open contribution. However, team members face important differ-
ences in access to expertise and control over system source code in particular. To understand the
role of these sorts of resources, we plan to examine different roles in the software development
process and how they affect individual contributions, and how these roles are established and
maintained.

Several authors have described FLOSS teams as having a hierarchical [174] or onion-like
structure [34,70,143,164], as shown in Figure 2. At the centre are the core developers, who con-
tribute most of the code and oversee the design and evolution of the project. Core developers are
usually distinguished by having write privileges or other formal authority over the source code
[75,76]. Core developers contribute most of the code and oversee the design and evolution of the
project. Most developers know and acknowledge each other’s contributions. The core is usually
small (e.g., 9 [103], 11 [106] or 15 [139] developers) and there is a high level of interaction
among core members, which would be difficult to maintain if the core were large. Surrounding
the core are perhaps ten times as many co-developers. These individuals contribute sporadically
by reviewing or modifying code or by contributing bug fixes. The co-developer group can be
much larger than the core, because the required level of interaction is much lower. The apparent
reliance of FLOSS teams on this structure provides an interesting contrast to traditional teams: in
a study of 182 work teams, Cummings and Cross [53] found that core-periphery and hierarchi-
cal team structures were nega-
tively associated with per-
formance. On the other hand,
Halloran & Scherlis [86] sug-
gest that FLOSS processes
allow co-developers to move
in and out of the project with-
out hampering its function.
Surrounding the developers
are the active users: a subset
of users who use the latest
releases and contribute bug
reports or feature requests
(but not code). Some might
argue that this last group
should not be considered as

Core developers

Co-developers

Active users

Passive users

Initiator

Release
coordinator

Figure 2. Hypothesized FLOSS development team structure.

8

part of the team, though as we will discuss, they play an important part in the FLOSS develop-
ment process. Still further from the core are the passive users, who use the project’s outputs but
are not otherwise part of the project. The border of the outer circle is indistinct because the na-
ture and variety of FLOSS distribution channels makes it difficult or impossible to know the ex-
act size of the user population.

There is some evidence that clear definition of these roles is important for project effective-
ness. Sutanto, Kankanhalli & Tan [180] found that role ambiguity in distributed teams leads to
duplicate work (though this is often not viewed as a problem in FLOSS teams). Sagers [166] ar-
gues that restricting access to the core improves coordination and success of project. Halloran &
Scherlis [86] similarly argue for a “walled server” to manage the in-flow of information. It is
also important that various roles be filled. Active users in particular play an important role in
FLOSS development [155]. Research suggests that more than 50 percent of the time and cost of
non-FLOSS software projects is consumed by mundane work such as testing [176]. The FLOSS
process enables hundreds of people to work on these parts of the process [115], what Rossi [164]
describe as “parallel development… enabled by the modularization of the source code”. Giuri et
al. [75] found that the share of external contributors had a positive impact on project success.
Koch & Schneider [106] state bluntly, “the attraction of participants is therefore identified as one
of the most important aspects of open source development projects.”

However, how roles are defined and maintained within a project is still an open question.
Prior case studies have described how individuals move from role to role as their involvement
with a project changes. For example, a common pattern is for active users to be invited to join
the core development team in recognition of their contributions and ability. In some teams, this
selection is an informal process managed by the project initiator, while others such as the Apache
Project, have formal voting processes for vetting new members. However, core developers must
have a deep understanding of the software and the development processes, which poses a signifi-
cant barrier to entry, particularly in a distributed team [68,91]. This barrier is particularly trou-
bling because of the reliance of FLOSS projects on volunteer submission of new code and on
“fresh blood” [52]. On the other hand, we are still learning how the privileges and responsibili-
ties of these different roles are defined. Again, some projects seem to have formal role defini-
tions, while in others, roles seem to be more emergent.

Rules and norms and structures of legitimation. Finally, actors’ social norms and team rules
embody structures of legitimation. The regulative function of teams, as presented by Walton and
Hackman [194], describes one aspect of team functions as the creation of implicit norms and ex-
plicit rules [181]. Rossi [164] notes that rules allow developers to form stable expectations of
others’ actions, thus promoting coordination. The importance of such rules have been docu-
mented in conventional software and FLOSS development teams [e.g., 169,179]. For example,
Jørgensen [103] describes a set of implicit and explicit rules for software development in the
FreeBSD project (e.g., “Don’t break the build”), while Raymond [161] notes implicit rules re-
garding project forking at the community level. Gallivan [72] analyzes descriptions of the
FLOSS process and suggests that teams rely on a variety of social control mechanisms rather
than on trust. To conceptualize this aspect of teams, we also draw on Swieringa and Wierdsma’s
[181] description of organizations as collections of implicit and explicit rules that guide member
behaviours. Implicit rules are team norms, shared amongst members of the team. Explicit rules
are the stated rules, policies, procedures and team requirements defined for the team. We are par-
ticularly interested in the way these rules guide individual contributions to the team’s goals.

In our discussion above of shared mental models, we noted the importance of socialization,
which helps to spread norms as well as beliefs. However, consideration of structures of legitima-
tion raises the question of the origin of rules and norms. As the team attempts to achieve its task,
team interactions lead to the development of implicit and explicit rules for social or interpersonal
interaction to guide team member behavior in achieving its goals and functions. These changes
are the results of integrating the knowledge of experts into the team’s structure reflecting behav-
ioral changes within a team over time, what March et al. [134] and Hayes and Allinson [90] refer

9

to as learning on the group level. However, the practices by which these rules can be developed
in distributed settings is an open issue.

Combining the discussion of the three aspects of structure described above results in the con-
ceptual framework shown in Table 1. For each of the three aspects of structure, the table de-
scribes the embodiment of the structure as we have conceptualized it for FLOSS teams, and the
actions that create, reinforce or modify the structures. The resulting model is largely consistent
with Grant’s knowledge-based view of the firm [79], which analyzes a firm as a structure for in-
tegrating specialist knowledge into the firm’s activities and products [78]. Though this theory
was originally stated in terms of firms, it is easily applicable to FLOSS development teams. The
knowledge-based view presents coordination, shared mental models, communication and deci-
sion-making and learning as interdependent issues affecting the effectiveness of distributed
teams. Grant suggests that to integrate knowledge, firms need coordination mechanisms includ-
ing rules, sequencing and routines that economize on communication, knowledge transfer and
learning, and team decision making and problem solving for the most complex and unusual
tasks. Finally, although there is differentiation between experts in what they know, Grant identi-
fies shared mental models as an important prerequisite for knowledge integration.
3. Research Design

In this section, we discuss the design of the proposed study, addressing the basic research
strategy, concepts to be examined, sample populations and proposed data collection and analysis
techniques. We first discuss the goals and general design of the study. We then present the de-
tails of how data will be elicited and analyzed.

To study the dynamics of the formation and evolution of distributed teams of FLOSS devel-
opers, we develop an innovative multi-disciplinary approach to the study of human and social
dynamics. For each project, we will draw on multiple sources of data: developer interactions,
project and developer demographics, project plans and procedures and the source code. The data
will be analyzed using social network analysis (SNA), and cognitive and process maps based on
content analysis using Natural Language Processing (NLP) techniques to reveal the dynamics of
changes for the aspects of structure identified in Table 1 (shared mental models, roles, rules and
norms).

We envision our entire research project as having three overlapping phases. Each phase will
last roughly a year, though the transition between these phases will be gradual rather a sharp
boundary. The overall design is shown in Figure 3. In the first phase (roughly year 1), we will
examine project transcripts manually for evidence of the aspects of structure identified in Table 1
to determine what kinds of evidence will be good candidates for identification using NLP tech-
niques. In parallel, we will specialize our proven NLP techniques to deal with novel kinds of text

Table 1. Constructs for study: Embodiments of structures and
actions that reinforce or modify structures.

 Constructs for study

Structure Structural embodiment Actions that create/
reinforce/modify structure

Signification Shared mental models Socialization
Conversation
Recapitulation

Domination Roles with differential access to re-
sources

Role definition
Role assignment

Legitimation Norms
Formal rules and procedures

Rule creation and change

10

such as chat transcripts and identify appropriate dynamic SNA and code analysis techniques. In
the second phase (roughly year 2), we will use the NLP techniques to extract larger numbers of
the identified research-relevant features and will begin to correlate these with each other and
with the results of SNA and source code analysis. In the final phase (roughly year 3), we will
analyze large numbers of projects to develop generalizable findings. Throughout the study, we
plan to check triangulate our design and preliminary results with frequent engagement with the
FLOSS community through a project advisory board of developers.

In each phase, we will follow the four-step process suggested by Barley and Tolbert for ap-
plying a structurational perspective to analyzing organizational change [12]:

“(1) defining an institution (structure) at risk of change over the term of the study and selecting
sites in light of this definition; (2) charting flows of action at the sites and extracting scripts char-
acteristic of particular periods of time; (3) examining scripts for evidence of change in behavioral
and interaction patterns; and (4) linking findings from observational data to other sources of data
on changes in the institution of interest” (pg. 103).

In the remainder of this section, we will discuss how we implement each of these steps, while
deferring discussion of the details of data collection and analysis to subsequent sections.

Step one: Selecting sites. We will start each phase by identifying promising FLOSS projects
for study. During the first phase, we will our study a small number of teams, increasing the sam-
ple in subsequent phases. In the final phase, the size of the sample will be limited only by the

Figure 3. Phases of research plan.

11

available data and processing power (computer and human). In order to ensure that we are study-
ing teams large enough to have coordination problems (as opposed to single person development
efforts [110]), we will choose only projects with more than seven core developers [89]. We will
include both mature and newly forming teams to be able to assess the initial development stages,
though a significant advantage of studying FLOSS teams is the ability to collect data from
through out the projects’ lifespan. We will also take into consideration some pragmatic consid-
erations, such as selecting only projects where we have access to the data we need (e.g., message
logs).

Step two: Charting flows of actions. In this step, we analyze the actions of team members
within a particular time period. We will extract team interactions from email logs and other in-
teractions and identify team outputs by examining the code created. The analysis will also reveal
the structural patterns that prevail at different points in time. The details of data elicitation and
analysis are discussed in the following sections.

Step three: Identifying patterns of changes. Once we extract segments of interactions and
outputs discussed in step two, we will analyze them to reveal the dynamics of the teams. More
specifically we will uncover the patterns of behavior through which members change shared
mental models, roles and norms and rules, and the implications of these changes for team actions
and outputs. We will investigate the dynamics by which teams develop shared mental models by
studying how members contribute to and coordinate the tasks, paying special attention to evi-
dence of socialization, conversation and recapitulation. We will study how roles are assigned and
how they evolve over time by studying member contribution and by looking for evidence of role
definition and role changes. Lastly, we will study the dynamics by which rules and norms
evolve, paying special attention to evidence of rule creation and modification. For each of these
types of structure, we will identify how they affect task contribution and coordination.

Step four: Linking changes in structures to other changes. In Step 4, Barley and Tolbert [12]
suggest linking changes in the structures to other changes of interest in the sites being studied.
To accomplish this step, we will triangulate evidence about the teams gathered from multiples
sources of evidence about the teams. For example, the implications of changes in structure will
be assessed by link them to changes in the program source code and other team outputs or to
team membership.
Data collection

To explore the concepts identified in the conceptual development section of this proposal
(Table 1), we will collect and analyze a range of data: project and developer demographics, in-
teraction logs, project plans and procedures, and source code. In the remainder of this section, we
will briefly review each source. Table 2 shows the mapping from each construct to data sources
and analysis techniques.

Developer demographics. We will collect basic descriptive data about developers, such as
their areas of expertise, formal role, years with the project or the other projects in which the de-
veloper participates. Often these data are self-reported by the developers on project or personal
home pages. We will track changes in the formal roles of members using this source. By examin-
ing PGP key signatures, we can identify meetings between developers [148], which will suggest
past opportunities for socialization.

Project plans and procedures. Many projects have stated release plans and proposed
changes. Such data are often available on the project’s documentation web page or in a “status”
file that is used to keep track of the agenda and working plans [52]. For example, Scacchi [173]
examined requirements documentation for FLOSS projects. We will also examine any explicitly
stated norms, procedures or rules for taking part in a project, such as the process to submit and
handle bugs, patches or feature requests. Such procedures are often reported on the project’s web
page (e.g., http://dev.apache.org/guidelines.html). We will track changes in the various versions
of any specific set of rules and procedures.

12

Interaction logs. The most voluminous source of data will be collected from archives of
CMC tools used to support the teams’ interactions for FLOSS development work [96,115].
These data are useful because they are unobtrusive measures of the team’s behaviours [198].
Mailing list archives will be a primary source of interaction data that illuminates the ‘scripts’ for
the analysis of dynamics [12], as email is one of the primary tools used to support team commu-
nication, learning and socialization [114]. Such archives contain a huge amount of data (e.g., the
Linux kernel list receives 5-7000 messages per month, the Apache httpd list receives an average
of 40 messages a day). From mailing lists, we will extract the date, sender and any individual
recipient’ names, the sender of the original message, in the case of a response, and text of each
message. In a similar analysis of student messages, Dutoit & Bruegge [61] found relations be-
tween level, pattern and content of messages and team performance. In addition to email, we will
examine features request archives and logs from other interaction tools, such as chat sessions.
While in most cases these archives are public, we plan to consult with the Syracuse University
Human Subjects Institutional Review Board to determine what kind of consent should be sought
before proceeding with analysis.

Source code. A major advantage of studying open source software is that we have access to
the team outputs in the form of the program source code. As Harrison puts it, “For a change, we
[software engineering researchers] can now focus on the analysis rather than the data collection”.
Most projects use a source code control system such as CVS, which stores intermediate versions
of the source and the changes made. From these logs, we will be able to extract data on the date
and name of the contributors, the kinds of contributions they make and the change to the source
code in order to understand the software structure and the role of individual developers
[71,80,140]. Raw software code poses numerous challenges to interpretation [182]. For example,
not all projects assign authorship in the CVS tree. We hope to leverage our analysis with work
being carried out by other researchers in order to deal with these challenges [e.g., 106].
Data analysis

While voluminous, the data described above are mostly at a low level of abstraction. The col-
lected data will be analyzed using a variety of techniques to raise the level of conceptualization
to fit our theoretical perspective. To do so, we are planning a multi-stage analysis process, as

Table 2. Constructs, sources of data, and analysis.

Concept Constructs Data sources and analysis
Action Task coordination and

contribution
Process mapping, social network analysis, code
analysis

Shared mental models NLP-based content analysis of interaction logs Structures of
signification Socialization

Conversation
Recapitulation

NLP-based content analysis of interaction logs

Roles with differential
access to resources

Process mapping, social network analysis, code
analysis
NLP-based content analysis of interaction logs

Structures of
domination

Role definition
Role changes

Process mapping, social network analysis, code
analysis

Norms
Formal rules and pro-
cedures

NLP-based content analysis of interaction logs
Project plans and procedures

Structures of
legitimation

Rule creation and
change

NLP-based content analysis of interaction logs

13

shown in Figure 4. These stages will be carried out in some form for each project and in each
phase of the research. In the first stage, we will use content analysis, SNA and code metrics to
extract relevant phenomenon from the raw data. In the second stage, we will use these results to
identify the constructs described in Section 2. The analysis will paint a picture of each project in
terms of the contributions towards effective software development as well as towards develop-
ment of structures of shared mental models, roles, rules and norms. The final stage is to develop
process maps that document the flows of action (Step 2) and the patterns of change (Step 3) that
address our research questions. These results will show the practices in each project that build
and evolve these structures as team members learn to work together and to innovate more effec-
tively. In the remainder of this section, we will describe the analysis approaches to be used in
each stage.
Analysis stage 1

The first stage includes three analysis techniques to reduce the large amount of raw data to
more specific codes and measures: content analysis, social network analysis and source code
analysis.

Content analysis. Content analysis of computer-mediated communication (CMC) has been an
active area of research [13,97]. This project will rely heavily on content analysis of the text from
these interaction archives to develop insights on the extent and development of shared mental
models, rules and norms as well as socialization (e.g., the way projects are created, introduction
of new members, departure of members and community building).

In the first phase of the research project, data will be content analyzed following the process
suggested by Miles and Huberman [138], iterating between data collection, data reduction (cod-
ing), data display, and drawing and verifying conclusions. The researchers will develop an initial
content analytic framework to uncover the patterns of the concepts present in the data. The initial
(deductive) framework will be based on indicators from content analytic frameworks previously
used to investigate shared mental models [e.g., 62]. In addition, we will incorporate work on

Figure 4. Data analysis, from raw data to team dynamics and outcomes.

14

Asynchronous Learning Networks investigating social, cognitive and structuring processes of
virtual teams [92]. However, these manual techniques require a lot of work on the part of the re-
searcher, which limits the amount of data that can be analyzed.

In subsequent phases, we will utilize Natural Language Processing (NLP) technology to as-
sist in identifying important semantic patterns that can then be translated into emerging codes.
Turner et al. [183] similarly used some simple NLP approaches to analyze bug reports, though
our proposed work goes well beyond this initial effort. Because the use of NLP techniques is one
of the major innovations of this proposal and is the foundation of further analysis, we will ex-
plain its application in more detail. The NLP-based system developed at the Center for Natural
Language Processing (CNLP) at Syracuse University analyzes naturally occurring texts (docu-
ments, transcribed interviews, email, chat, etc.) for the explicit and implicit meanings which are
conveyed (and which a human would recognize). The resulting NLP annotations will be used as
initial codes representing the events, roles, intentions, goals, expectations, etc. reported and/or
hinted at in the text (e.g. names, popular abbreviations, special terms, time expressions and other
phrases with particular semantic values relevant to the research agenda).

Application of NLP-based text processing for CMC transcripts (e.g., chat room conversations
or emails) has been a challenge given the nature of these interactions. These texts are known for
their use of specialized language patterns, as well as informal grammar and spelling rules [159].
To effectively meet the challenge of understanding these stylistically diverse and grammatically
inconsistent texts, our NLP technology will leverage theoretical and empirical advances in re-
search on Sublanguage Analysis and Discourse Structure. A sublanguage is defined as the par-
ticular language usage patterns, which develop within the written or spoken communications of a
community that uses this sublanguage to accomplish some common goal or to discuss topics of
common interest. Early research in Sublanguage Theory [83,128,129,165] has shown that there
are linguistic differences amongst various types of discourse (e.g. news reports, email, manuals,
requests, arguments, interviews) and that discourses of a particular type that are used for a com-
mon purpose within a group of individuals exhibit characteristic linguistic (lexical, syntactic,
semantic, discourse, and pragmatic) features. Humans use these characteristics to extract mean-
ing, and these human processes can be simulated by a full-fledged NLP system in order to ex-
tract levels of meaning beyond the simple surface facts.

The fact that a sublanguage deals with a restricted domain and is used for a specific purpose
results in useful restrictions on the range of linguistic data that needs to be accounted for by the
system. At the lexical level, the sublanguage excludes large parts of the total vocabulary of a
language; for those words in the sublanguage vocabulary, the number of senses actually used for
each word is limited. At the syntactic level, a sublanguage is characterized by predictable surface
structures, utilizes a limited range of verbs, and makes extensive use of domain-specific nominal
compounds, which reflect the specialized nature of the sub-field. The discourse level of a
sublanguage deals holistically with units of language larger than a sentence, relying on the pre-
dictable structure of communications in this sublanguage. The discourse level model of a particu-
lar communication type consists of semantic categories (reflecting the purpose of
communication) and the relations among those categories. The NLP system’s recognition of
these semantic categories handles the great surface variety in terms of lexical and syntactic
choices in how entities (e.g. people, organizations), events (e.g. updates, requests), and relations
amongst them (e.g. who requests an action by whom) are realized in text. As a result, the sublan-
guage analysis is able to abstract up from these individual instances to the underlying concepts
that indicate patterns and reveal trends. Communication types that have been analyzed and for
which sublanguage grammars have been developed include abstracts, news articles, arguments,
instructions, manuals, dialogue, instructions, email, and queries [129]. The sublanguage analysis
framework will be applied to automatically identify the important linguistic patterns in the text-
based electronic communications among the FLOSS developers and to annotate them with initial
content categories, which will then be refined by the project team to reflect the conceptual frame-
work emerging from data.

15

Social network analysis (SNA). Social network analysis will be used to analyze patterns of in-
teractions (e.g., who responds to whose email) in order to reveal the structure of the social net-
work of projects and its impact on team outcomes. Madey, Freeh & Tynan [131] applied SNA to
connections between projects, but not within projects. Ducheneaut [60] examined interaction pat-
terns, but focused on visualization of the networks. Our work using the SNA approach to interac-
tions in bug fixing logs has revealed that projects display a surprising range of centralizations
[41] and most projects were quite hierarchical [42], similar to the results of Ahuja & Carley [2].
However, these analyses have just scratched the surface.

By documenting the social network of a project, we will assess each individual’s centrality to
the project and the project’s level of hierarchy, which seems to mediate the effect of role and
status on individual performance within virtual teams [3]. We will also examine the way contri-
butions are distributed among developers and the roles assumed by core developers. The results
of such analyses will support identification of the social relations patterns and the way such pat-
terns develop and affect team learning and socialization. As such, social network analysis pro-
vides a clear lens through which we can observe the impacts of asynchronous communication
technology on this new and emergent organizational form. Dynamic SNA, the study of the de-
velopment of networks over time rather than at single static snapshots, is a developing area of
research, so our work in this area has the potential to make a contribution to the field in the form
of new methodological tools.

Software source code analysis. In analyzing the teams’ output, we will focus on the program
software source code, though outputs such as documentation are also of interest and available for
analysis. Analysis of a team’s output is important both for assessing the team’s performance and
for studying the connection between the team’s internal evolution and what it actually does. The
available documentation in a project as well as the change in the documentation would help us
understand the group dynamics and the evolution of the norms in the FLOSS teams. Document
analysis is especially useful when analyzed together with the communication logs such as email
exchanges or chat logs. Generally speaking, the cost and quality of a software program is linked
to the software code’s complexity. Software should be only complex enough to solve the prob-
lem at hand or to perform the task it is meant to. Additional complexity results in higher costs, in
terms of effort, resources and time, and as well as lower quality in the form of, in defects, unpre-
dictability and difficulty in maintenance. Some common metrics for the complexity of a code
base include measurements of size (in lines of code or ‘function points’), and the coupling and
cohesion among the software modules. There are many sets of such measurements in the litera-
ture, adapted for the structural type of language, including the Cocomo metrics [18,19] and the
“CK” suite of metrics [33].

While the majority of the work in this area involves measuring a static code-base and making
and testing predictions regarding its development, there is also a growing body of literature con-
cerned with the evolution (i.e., patterns of change over time) of software projects. Beginning
with the work of Belady and Lehman [14], this work takes as its unit of analysis a change in the
code made by a developer, paying particular attention to the ‘change logs’ and ‘check-in com-
ments’ made by the developers at the time. In our analysis, we will be able to assess these
changes and link them back to the discussions in the mailing lists and other developer activities.
This work, therefore, crosses the boundary of the code and measures the work practices of indi-
viduals and their effects over time, again expressed in terms of complexity, size, faults, and ulti-
mately in software performance [104]. Assessing the evolutions and patterns of change in the
code base will provide an additional dynamic element to juxtapose against changes in the organi-
zation of the team and the teams’ structures of signification, domination and legitimation. The
shape of the code base is both structured by the actions of the team and, in turn over time, comes
to structure those actions.
Analysis stage 2

In the second stage of the analysis, we will build on the results of the first stage to provide
evidence for the concepts in our model: developer activities that contribute to output and team

16

coordination and that build team structures in the form of shared mental models, roles and norms
and rules.

Individual contributions and coordination. The open source software development processes
will be mapped based on a content-analysis coding of the steps involved [200]. For example, to
map the bug fixing process, we will examine how various bugs were fixed as recorded in the bug
logs, email messages and in the source code. Yamauchi et al. [200] similarly coded messages to
understand the development processes of two FLOSS projects, while Bonneaud, Ripoche & San-
sonnet [20] analyzed bug report messages for the Mozilla project to understand the bug fixing
practices. We will also identify the coordination modes and task assignment practices involved in
software maintenance (i.e., the number of features request assigned, types of requests, number
and types of spontaneous contributions), the adoption of other formal coordination modes (from
the analysis of the written policies regarding contributions to projects), as well as the degree of
interdependency among the tasks (based on an analysis of communication patterns among differ-
ent roles and different contributors).

Shared mental models. To document shared mental models, we will develop cognitive maps
from content-analyzed interaction data. Development of these maps will enable us to represent
and compare the mental models of the developers about the project and project team so as to
gauge the degree of common knowledge and the development of shared mental models
[29,30,113,144]. We are particularly interested in how these maps evolve over time. Metrics
(e.g., number of heads, tails, domain and team centrality) provided by existing software packages
(e.g., Decision Explorer or CMAP2) and ad hoc developed metrics will be used to analyze and
compare the different maps. In particular, the comparisons among different team members’ maps
will provide insights about eventual shared mental models acting within teams. We will also de-
rive collective maps for each project. Collective maps usually represent perspectives that are
common to all the members of a team. Shared perspectives derive from the comprehension of
mutual positions and roles, which are fundamental to create synergies within the team. The PI,
Kevin Crowston, has some experience in studying mental models [44] but for this analysis in
particular we will work with a collaborator experienced in cognitive mapping, Professor Barbara
Scozzi of Polytechnic of Bari, as discussed below.

Roles. We plan to document roles using several approaches. First, we will look for descrip-
tions of formal roles and role assignments. Second, we will identify which individuals perform
which activities to identify different informal roles. For example, the NLP-based sublanguage
analysis will provide subtler indications that implicitly suggest informal roles, as it is based not
only on who communicates to whom, but the semantic and affective content of their communica-
tions. Finally, we will use social network information to identify various structural roles in the
team (e.g., via blockmodels of interactions). In all cases, we will be interested in how individuals
fill these roles over time. This analysis of informal and structural roles should provide a useful
counterpoint to descriptions of formal roles.

Norms and rules. The final concepts in our model are norms and rules. We expect to be able
to identify formal rules from the coding of developer interactions and project documentation.
Norms may be identified by looking for expressions of implicit standards or moral censure when
norms are violated. Identification of coordination mechanisms will also help reveal explicit or
implicit rules used by the teams.
Analysis stage 3

In the third stage of analysis, the results of the analyses discussed above will be integrated to
provide the fullest picture of the dynamics of the FLOSS teams. This step corresponds to steps 3
and 4 in Barley and Tolbert’s [12] framework. The initial method for integrating the results will
be to develop a timeline for each project that show how the activities revealed by each analysis
and our inference about the state of the different kinds of structures are related in time. Van de
Ven and Poole [186] describe in detail the methods they used to develop and test a process the-
ory of how innovations develop over time.

17

We will then dissect the timelines to document the history with the project of individual team
members and the history of various key events, such as bug fixes, new features or changes in
structures. For example, the timeline might show an individual first taking part in team discus-
sions at one point in time, continuing to interact with other members and later contributing code
or other products to the project. The history might also include prior discussion that the individ-
ual might have been following as a lurker3, based for example on their initial account creation
date. The analysis will provide indications of that individual’s sharing of mental models or con-
tributing to their development, the different roles filled over time and evidence of knowledge of
or contribution to norm and rule development.

These dissected descriptions can then be clustered and aggregated, e.g., to show typical pat-
terns of participation in a project or different processes for bug fixing or feature development.
Process traces can be clustered using optimal matching procedures [1] to develop clusters of
processes. Differences in the quality or quantity of contributions can be correlated back to differ-
ences in the dynamics of the teams, e.g., in the level of contributions or the modes of coordina-
tion or socialization.

The final step in the analysis is to compare these patterns across projects, e.g., to understand
why some projects attract and retain more developer participation or are quicker at fixing bugs or
developing high quality software. We can then generalize these results to provide findings at
conceptual level that applies to other kinds of teams, e.g., effective modes of socialization or of
task assignment using volunteers. Another question we intend to consider is the extent to which
the use of various distributed software development tools (e.g., CVS, bug tracking databases)
provides a source of structure for the process [8].
4. Management plan

Based on preliminary assessment of the effort required, we are requesting funding for three
graduate students, summer support for 3 PIs and 10% support during the year for a research sci-
entist, Nancy McCracken. Crowston and Heckman have PhDs in the field of Management and
publish mostly in the Information Systems area (Crowston also works in Organizational Com-
munications). Liddy has a PhD in Information Transfer and McCracken in Computer Science,
and both work in the field of Natural Language Processing.

All three PIs, Kevin Crowston, Robert Heckman and Elizabeth Liddy, will work during the
summer on project management and research design (0.5 months for Crowston and Heckman
and 0.3 months for Liddy) and devote 10% of effort during the academic year to project man-
agement and oversight (1/2 day per week, supported by Syracuse University). Each PI will be
responsible for designing specific aspects of the project and overseeing work on those aspects.
Specifically, Crowston will oversee the SNA and code analysis, Heckman will oversee the cod-
ing of developer transcripts and Liddy and McCracken will oversee specialization and applica-
tion of the NLP techniques. As the project continues, these responsibilities will overlap more as
the data are integrated. All three PIs will share in project selection, overall project design and
report writing. The first PI, Crowston, will be responsible for general project oversight and re-
porting to NSF.

A PhD student will support each PI. The graduate students will devote 50% effort during the
academic year and 100% effort during the summers, for a total of 3300 hours/year (9900 hours in
three years). The graduate students will support the principal investigators in sample section,
definition of constructs and variables, and will have primary responsibility for data collection
and analysis, under the oversight of the PIs. Each student will have initial responsibility for one
aspect of the analysis, as discussed above, but in later phases, as the results from the various
sources are merged, we anticipate shifting the assignment of responsibilities.

These activities, in particular those related to the analysis of shared mental models within the
FLOSS development teams, will be carried out with the assistance of an international collabora-

3 A ‘lurker’ is a subscriber to a mailing list or discussion forum who reads but does not (yet) speak.

18

tor, Dr. Barbara Scozzi of the Department of Mechanical and Business Engineering, Polytechnic
of Bari, Italy (please see the supporting documents section for a letter of support and vitae; no
funding is being requested from NSF to support Dr. Scozzi). Dr. Scozzi has collaborated with the
first PI on a study of FLOSS project success factors [48] and her competencies in cognitive map-
ping [4,28] will be particularly valuable for this project.

The proposed research will be guided by an advisory board of FLOSS developers to ensure
relevance and to help promote diffusion of our findings into practice. To provide a broad per-
spective, we wanted the board to include developers from a variety of projects, parts of the world
and with different roles in projects. Current advisory board members include Paul Everitt, co-
founder of Zope Corporation and executive director of the Plone Foundation, Dirk-Willem van
Gulik, president of the Apache Software Foundation, as well as Jeffrey Forman, a developer with
the Gentoo Linux project.

In order to build an interdisciplinary community of researchers to meet the challenges of this
multi-disciplinary research project, we will employ two main project management techniques.
First, we will have regular meetings of the project to share findings and to plan the work. Ini-
tially, these will be every other week, but the frequency of meetings will be adjusted depending
on our experience and the pace of the work being carried out at the time. These formal meetings
of all project participants will augment the regular interaction of the PIs with the students work-
ing on the data collection and analysis and expected frequent interactions of the students as they
integrate data from the same projects. Second, an initial project activity will be the development
of a more detailed timeline (based on the project plan presented above) against which progress
will be measured. The budget includes support for PIs and PhD students during summer and aca-
demic year to support these activities.
5. Conclusion

In this proposal, we develop a conceptual framework and a research plan to investigate work
practices within distributed FLOSS development teams. To answer our research question (What
are the dynamics through which self-organizing distributed teams develop and work?), we will
conduct a longitudinal in-depth study identifying and comparing the formation and evolution of
distributed teams of FLOSS developers. We will study how these distributed groups develop
shared mental models to guide members’ behavior, roles to control access to resources, and
norms and rules to shape action and the dynamics by which independent, geographically-
dispersed individuals are socialized into the group.
Expected intellectual merits

The project will contribute to advancing knowledge and understanding of self-organizing dis-
tributed teams by identifying the dynamics of distributed FLOSS teams. The proposed study has
two main strengths. First, we will fill a gap in the literature with an in-depth investigation of the
dynamics of developing shared mental models, roles and norms and rules in FLOSS teams and of
socializing new members to these structures, based on a large pool of data and a strong concep-
tual framework. Second, we will use several different techniques to analyze the team dynamics,
providing different perspectives of analysis and thus a richer portrait of the dynamics of the de-
velopment teams. Moreover, some of data analysis techniques, particularly natural language
processing, have not yet been used with FLOSS teams, and as a result this project will contribute
not only to the available methodologies for understanding distributed teams, but also serve to
further extend the range of capabilities of sublanguage analysis and natural language processing.

We expect this study to have conceptual, methodological as well as practical contributions.
Understanding the dynamics of learning in a team of independent knowledge workers working in
a distributed environment is important to improve the effectiveness of distributed teams and of
the traditional and non-traditional organizations within which they exist. Developing a theoreti-
cal framework consolidating a number of theories to understand the dynamics within a distrib-
uted team is an important contribution to the study of distributed teams.

19

Expected broader impacts
The project has numerous broader impacts. The project will benefit society by identifying the

dynamics of teams in FLOSS development, an increasingly important approach to software de-
velopment. The study will also shed light on dynamics of learning and socialization for distrib-
uted work teams in general, which will be valuable for managers who intend to implement such
an organizational form. Understanding the dynamics of these teams can serve as guidelines (e.g.,
for team governance, task coordination, communication practices or mentoring) to improve per-
formance and foster innovation. Understanding these questions is important because today’s so-
ciety entails an increased use of distributed teams for a wide range of knowledge work.
Distributed work teams potentially provide several benefits but the separation between members
of distributed teams creates difficulties in coordination, collaboration and learning, which may
ultimately result in a failure of the team to be effective [25,31,102,108]. For the potential of dis-
tributed teams to be fully realized, research is needed on the dynamics of learning and socializa-
tion. As well, findings from the study can be used to enhance the way CMC technologies are
used in education or for scientific collaboration. For example, the results could be used to im-
prove the design and facilitation of e-learning courses and distance classes. Finally, understand-
ing FLOSS development teams may be important as they are potentially training grounds for
future software developers. As Arent and Nørbjerg [6] note, in these teams, “developers collec-
tively acquire and develop new skills and experiences”.

To ensure that our study has a significant impact, we plan to broadly disseminate results
through journal publications, conferences, workshops and on our Web pages. We also plan to
disseminate results directly to practitioners through interactions with our advisory board and with
developers, e.g., at FLOSS conferences. Members of our research team have presented our ear-
lier work at osdc.com.au (an Australian FLOSS developers conference) and organized a Bird of a
Feather session at the ApacheCon conference. Our results could also potentially be incorporated
into the curricula of the professional master’s degrees of the Syracuse University School of In-
formation Studies. The results could as well as improve the pedagogy of our courses, as these
programs are offered on-line and thus involve distributed teams. Findings about the dynamics of
the learning process in FLOSS development teams can also benefit the design of technology and
engineering curricula. These fields use similar processes for learning and development, and thus
can benefit from out findings.

In order to improve infrastructure for research, we plan to make our tools and data available
to other researchers. Efforts to share data collection are already in place based on the current pro-
ject, in the form of the OSSMole (http://ossmole.sourceforge.net/), a repository for FLOSS data.
As a result of the current proposal, we anticipate being able to share analyzed transcripts as well.
The project will promote teaching, training, and learning by students in the research project.
These students will have the opportunity to develop skills in data collection and analysis.

As well, the project has an important international component with the participation of Dr.
Scozzi of Politecnico di Bari, Italy, and her students. Syracuse University has hosted several visi-
tors from the Politecnico di Bari in the past, and with the support of this grant, we plan to have
our students spend time working with Dr. Scozzi. Such international exchanges and collabora-
tions are a tremendous vehicle for expanding the perspectives, knowledge and skills of both
teams of scientists. They offer a globalization of research and career opportunities, which con-
tributes to the professional and personal development of the students. These exchanges equip
students to understand and integrate scientific, technical, social, and ethical issues to confront the
challenging problems of the future.
Results from prior NSF funding

The PI for this grant, Kevin Crowston, has been funded by four NSF grants within the past
48 months. The two grants most closely related to the current proposal (NSF grant IIS 04–14468,
Effective work practices for Open Source Software development, $327,026, 2004–2006, and
SGER IIS 03–41475, $12,052, 2003–2004) were discussed above in the literature review. These
grants have provided support for travel to conferences (e.g., ApacheCon and OSCon) to observe,

20

interview and seek support from developers and to present preliminary results, and for the pur-
chase of data analysis software and equipment. This work has resulted in three journal pa-
pers[41,42,48], multiple conference papers [35,38] and workshop presentations [36,37,40,49,99],
with additional papers under review [39,43]. The current grant is sought to continue this re-
search, by applying natural language processing techniques to investigate on a large-scale the
dynamics of these teams.

The most recent grant is IIS 04–14482 ($302,685, 2005–2006), for “How can document-
genre metadata improve information-access for large digital collections?” (with Barbara Kwas-
nik). This project started less than two months ago, so there are no specific results as yet to re-
port, though earlier work by the PIs on genre has appeared in journal [e.g., 45] and conference
papers [e.g., 111]. The grant partially supported work on a conference mini-track and journal
special issue [112]. Earlier support came from IIS–0000178 ($269,967, 2000–2003), entitled
Towards Friction-Free Work: A Multi-Method Study of the Use of Information Technology in the
Real Estate Industry. The goal of that study was to examine how the pervasive use of informa-
tion and communication technologies (ICT) in the real-estate industry changes the way people
and organizations in that industry work. Initial fieldwork resulted in several journal articles
[47,51,170] and numerous conference presentations [e.g., 46,50]. The PIs are currently working
with the National Association of Realtors to extend and disseminate these results and are plan-
ning a follow-on study.

The Co-PI of this proposal, Elizabeth D. Liddy, has received NSF funding for five projects in
the past five years. One is briefly described first, while the remaining four form a cohesive re-
search program, which is described in more detail below. The first grant was DUE-0241856
($2,519,166, 2002-06), entitled Multidisciplinary Systems Assurance Education. As a Co-PI on
this Federal Cyber Service Scholarship for Service Program grant, Liddy serves as mentor for
Masters students in both the Information Management and Telecommunication & Network Man-
agement degree programs. Liddy has been able to involve the students actively in appropriate
funded research projects underway at CNLP that address issues of information systems security
and insider threats. Efforts have been established to enable these students to have summer intern-
ships with local companies whose expertise is in R & D on information systems security. The
contribution to human resources is the main goal of this project and it is showing promising re-
sults.

The remaining four projects are funded by NSF’s National Science Digital Library Program
and involve research, implementation, and evaluation of NLP technology for automatic metadata
generation for educational objects, most typically teachers’ lesson plans and activity guides. The
four grants are DUE-0085837 ($366,000, 2000-02) Breaking the MetaData Generation Bottle-
neck, DUE-0121543 ($475,000, 2001-03), Standard Connection: Mapping Educational Objects
to Content Standards, DUE-0226312 ($374,938, 2002-04), MetaTest: Evaluating the Quality &
Utility of MetaData and DUE-0435339 ($634,218, 2004-2006), Computer-Assisted Standard As-
signment & Alignment. Two of the projects center around content standards, either their auto-
matic assignment to resources or the automatic mapping amongst multiple national standards and
the fifty state standards. Over the life of these four projects, Liddy and team have: 1) adapted
their existing NLP methods and technology to the task of extracting from learning resources the
values for the 23 metadata elements used for representing learning objects in digital libraries (15
Dublin Core + 8 GEM); 2) proven in end-user empirical evaluations that the metadata elements
assigned automatically using NLP are equally good as those assigned by humans, and; 3) ex-
tended the metadata capability to map individual resources to the relevant content standards in
Math and Science, key to standards-based education. Results were evaluated by experts in stan-
dards and classroom teachers. The fourth project is just underway and therefore there are no re-
sults as of yet. The grants have resulted in numerous publications [119-127,201]. Four PhD
students and three Masters students have been active participants, learning both about the re-
search and evaluation process and the wider field of digital libraries. They have presented the
projects’ findings jointly or singly and interacted substantively with this research community at
relevant conferences.

21

References
1 Abbott, A. (1990) A primer on sequence methods. Organization Science, 1(4), 375–392
2 Ahuja, M.K. and Carley, K. (1998) Network structure in virtual organizations. Journal of

Computer-Mediated Communication, 3(4)
3 Ahuja, M.K., Carley, K. and Galletta, D.F. (1997) Individual performance in distributed

design groups: An empirical study. In SIGCPR Conference, pp. 160–170, San Francisco,
ACM

4 Albino, V., Kuhtz, S. and Scozzi, B. (2003) Actors and cognitive maps on sustainable de-
velopment in industrial district. In Uddevalla Symposium, Uddevalla, Sweden

5 Alho, K. and Sulonen, R. (1998) Supporting virtual software projects on the Web. In Work-
shop on Coordinating Distributed Software Development Projects, 7th International Work-
shop on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE
’98)

6 Arent, J. and Nørbjerg, J. (2000) Software Process Improvement as Organizational Knowl-
edge Creation: A Multiple Case Analysis. In Proceedings of the 33rd Hawaii International
Conference on System Sciences, pp. 11 pages, IEEE Press

7 Armstrong, D.J. and Cole, P. (2002) Managing distance and differences in geographically
distributed work groups. In Distributed Work (Hinds, P. and Kiesler, S., eds.), pp. 167–186,
Cambridge, MA: MIT Press

8 Asklund, U. and Bendix, L. (2001) Configuration Management for Open Source Software
(R-01-5005) Department of Computer Science, Aalborg University

9 Augustin, L., Bressler, D. and Smith, G. (2002) Accelerating software development
through collaboration. In International Conference on Software Engineering (ICSE), pp.
559–563, Orlando, FL

10 Bandow, D. (1997) Geographically distributed work groups and IT: A case study of work-
ing relationships and IS professionals. In Proceedings of the SIGCPR Conference, pp. 87–
92

11 Barley, S.R. (1986) Technology as an occasion for structuring: Evidence from the observa-
tion of CT scanners and the social order of radiology departments. Administrative Sciences
Quarterly, 31, 78–109

12 Barley, S.R. and Tolbert, P.S. (1997) Institutionalization and structuration: Studying the
links between action and institution. Organization Studies, 18(1), 93–117

13 Beißwenger, M. (2003) Bibliography of Chat Communications. Available from:
http://www.chat-bibliography.de/, Accessed 17 February

14 Belady, L.A. and Lehman, M.M. (1976) A model of large program development. IBM Sys-
tems Journal, 15(1), 225-252

15 Bessen, J. (2002) Open Source Software: Free Provision of Complex Public Goods Re-
search on Innovation

16 Bezroukov, N. (1999) Open source software development as a special type of academic
research (critique of vulgar raymondism). First Monday, 4(10)

17 Bezroukov, N. (1999) A second look at the Cathedral and the Bazaar. First Monday, 4(12)
18 Boehm, B. (1981) Software Engineering Economics: Prentice Hall
19 Boehm, B., Clark, B., Horowitz, E., Madachy, R., Shelby, R. and Westland, C. (1995) Cost

Models for Future Software Life Cycle Processes: COCOMO 2.0. Annals of Software En-
gineering, 1, 57–94

20 Bonneaud, S., Ripoche, G. and Sansonnet, J.-P. (2004) A socio-cognitive model for the
characterization of schemes of interaction in distributed collectives. In Workshop on Dis-

22

tributed Collective Practice: Building new Directions for Infrastructural Studies, CSCW
2004, Available from: http://www.limsi.fr/Individu/turner/DCP/Chicago2004
/Bonneaud.pdf, Accessed 23 January 2005

21 Brandon, D.P. and Hollingshead, A.B. (2004) Transactive Memory Systems in Organiza-
tions: Matching Tasks, Expertise, and People. Organization Science, 15(6), 633–644

22 Brooks, F.P., Jr. (1975) The Mythical Man-month: Essays on Software Engineering, Read-
ing, MA: Addison-Wesley

23 Brown, J.S. and Duguid, P. (1991) Organizational learning and communities-of-practice:
Toward a unified view of working, learning, and innovation. Organization Science, 2(1),
40–57

24 Butler, B., Sproull, L., Kiesler, S. and Kraut, R. (2002) Community effort in online groups:
Who does the work and why? In Leadership at a Distance (Weisband, S. and Atwater, L.,
eds.), Mahwah, NJ: Lawrence Erlbaum

25 Bélanger, F. and Collins, R. (1998) Distributed Work Arrangements: A Research Frame-
work. The Information Society, 14(2), 137–152

26 Cannon-Bowers, J.A. and Salas, E. (1993) Shared mental models in expert decision mak-
ing. In Individual and Group Decision Making (Castellan, N.J., ed.), pp. 221-246,
Hillsdale, NJ: Lawrence Erlbaum Associates

27 Cannon-Bowers, J.A. and Salas, E. (2001) Reflections on shared cognition. Journal of Or-
ganizational Behavior, 22, 195–202

28 Carbonara, N. and Scozzi, B. (2003) Cognitive maps to analyze new product development
processes: A case study. In 10th International Product Development Management Confer-
ence, Brussels, Belgium

29 Carley, K.M. (1997) Extracting team mental models through textual analysis. Journal of
Organizational Behaviour, 18, 533–558

30 Carley, K.M. and Palmquist, M. (1992) Extracting, representing and analyzing mental
models. Social Forces, 70(3), 601–636

31 Carmel, E. and Agarwal, R. (2001) Tactical approaches for alleviating distance in global
software development. IEEE Software(March/April), 22–29

32 Cassell, P., ed. (1993) The Giddens Reader, Stanford University Press
33 Chidamber, S.R. and Kemerer, C.F. (1994) A metrics suite for object oriented design. IEEE

Transactions On Software Engineering, 20(6), 476-493
34 Cox, A. (1998) Cathedrals, Bazaars and the Town Council. Available from:

http://slashdot.org/features/98/10/13/1423253.shtml, Accessed 22 March 2004
35 Crowston, K., Annabi, H. and Howison, J. (2003) Defining Open Source Software project

success. In Proceedings of the 24th International Conference on Information Systems (ICIS
2003), Seattle, WA:

36 Crowston, K., Annabi, H., Howison, J. and Masango, C. (2004) Effective work practices
for Software Engineering: Free/Libre Open Source Software Development. In WISER
Workshop on Interdisciplinary Software Engineering Research, SIGSOFT 2004/FSE-12
Conference, Newport Beach, CA

37 Crowston, K., Annabi, H., Howison, J. and Masango, C. (2004) Towards a portfolio of
FLOSS project success measures. In Workshop on Open Source Software Engineering,
26th International Conference on Software Engineering, Edinburgh

38 Crowston, K., Annabi, H., Howison, J. and Masango, C. (2005) Effective work practices
for FLOSS development: A model and propositions. In Proceedings of the Hawai'i Interna-
tional Conference on System Science (HICSS), Big Island, Hawai'i:

23

39 Crowston, K., Heckman, R., Annabi, H. and Masango, C. (Under review) A structurational
perspective on leadership in Free/Libre Open Source Software teams.

40 Crowston, K. and Howison, J. (2003) The social structure of Open Source Software devel-
opment teams. In The IFIP 8.2 Working Group on Information Systems in Organizations
Organizations and Society in Information Systems (OASIS) 2003 Workshop, Seattle, WA

41 Crowston, K. and Howison, J. (2005) The social structure of free and open source software
development. First Monday, 10(2)

42 Crowston, K. and Howison, J. (In press) Hierarchy and Centralization in Free and Open
Source Software team communications. Knowledge, Technology & Policy

43 Crowston, K., Howison, J., Masango, C. and Eseryel, U.Y. (Under review) Face-to-face
interactions in self-organizing distributed teams.

44 Crowston, K. and Kammerer, E. (1998) Coordination and collective mind in software re-
quirements development. IBM Systems Journal, 37(2), 227–245

45 Crowston, K. and Kwasnik, B.H. (2003) Can document-genre metadata improve informa-
tion access to large digital collections? Library Trends, 52(2), 345–361

46 Crowston, K., Sawyer, S. and Wigand, R. (1999) Investigating the interplay between struc-
ture and technology in the real estate industry. In Organizational Communications and In-
formation Systems Division, Academy of Management Conference, Chicago, IL

47 Crowston, K., Sawyer, S. and Wigand, R. (2001) Investigating the interplay between struc-
ture and technology in the real estate industry. Information, Technology and People, 14(2),
163–183

48 Crowston, K. and Scozzi, B. (2002) Open source software projects as virtual organizations:
Competency rallying for software development. IEE Proceedings Software, 149(1), 3–17

49 Crowston, K. and Scozzi, B. (2004) Coordination practices for bug fixing within FLOSS
development teams. In Presentation at 1st International Workshop on Computer Supported
Activity Coordination, 6th International Conference on Enterprise Information Systems,
Porto, Portugal

50 Crowston, K. and Wigand, R. (1998) Use of the web for electronic commerce in real estate.
In Association for Information Systems Americas Conference, Baltimore, MD

51 Crowston, K. and Wigand, R. (1999) Real estate war in cyberspace: An emerging elec-
tronic market? International Journal of Electronic Markets, 9(1–2), 1–8

52 Cubranic, D. and Booth, K.S. (1999) Coordinating Open Source Software development. In
Proceedings of the 7th IEEE Workshop on Enabling Technologies: Infrastructure for Col-
laborative Enterprises

53 Cummings, J.N. and Cross, R. (2003) Structural properties of work groups and their conse-
quences for performance. Social Networks, 25, 197–210

54 Curtis, B., Krasner, H. and Iscoe, N. (1988) A field study of the software design process for
large systems. CACM, 31(11), 1268–1287

55 Curtis, B., Walz, D. and Elam, J.J. (1990) Studying the process of software design teams.
In Proceedings of the 5th International Software Process Workshop On Experience With
Software Process Models, pp. 52–53, Kennebunkport, Maine, United States:

56 de Souza, P.S. (1993) Asynchronous Organizations for Multi-Algorithm Problems, Doc-
toral Thesis, Department of Electrical and Computer Engineering, Carnegie-Mellon Uni-
versity

57 DeSanctis, G. and Poole, M.S. (1994) Capturing the complexity in advanced technology
use: Adaptive structuration theory. Organization Science, 5(2), 121–147

24

58 Di Bona, C., Ockman, S. and Stone, M., eds (1999) Open Sources: Voices from the Open
Source Revolution, O'Reilly & Associates

59 Dougherty, D. (1992) Interpretive barriers to successful product innovation in large firms.
Organization Science, 3(2), 179–202

60 Ducheneaut, N. (2003) The reproduction of Open Source Software programming communi-
ties, PhD Thesis, Information Management and Systems, University of California, Ber-
keley

61 Dutoit, A.H. and Bruegge, B. (1998) Communication Metrics for Software Development.
IEEE Transactions On Software Engineering, 24(8), 615–628

62 Edmondson, A. (1999) Psychological safety and learning behavior in work teams. Adminis-
trative Science Quarterly, 44(2), 350-383

63 Edwards, K. (2001) Epistemic communities, situated learning and Open Source Software
development. In Epistemic Cultures and the Practice of Interdisciplinarity Workshop,
NTNU, Trondheim

64 Ellis, A.P.J., Hollenbeck, J.R., Ilgen, D.R., Porter, C.O.L.H., West, B.J. and Moon, H.
(2003) Team learning: Collectively connecting the dots. Journal of Applied Psychology,
88(5), 821-835

65 Espinosa, J.A., Kraut, R.E., Lerch, J.F., Slaughter, S.A., Herbsleb, J.D. and Mockus, A.
(2001) Shared mental models and coordination in large-scale, distributed software devel-
opment. In Twenty-Second International Conference on Information Systems, pp. 513–518,
New Orleans, LA

66 Espinosa, J.A., Lerch, F.J. and Kraut, R.E. (2004) Explicit versus implicit coordination
mechanisms and task dependencies: One size does not fit all. In Team cognition: Under-
standing the factors that drive process and performance (Salas, E. and Fiore, S.M., eds.),
pp. 107-129, Washington, DC: APA

67 Feller, J. (2001) Thoughts on Studying Open Source Software Communities. In Realigning
Research and Practice in Information Systems Development: The Social and Organiza-
tional Perspective (Russo, N.L. et al., eds.), pp. 379–388Kluwer

68 Fielding, R.T. (1997) The Apache Group: A case study of Internet collaboration and virtual
communities. Available from: http://www.ics.uci.edu/fielding/talks/ssapache
/overview.htm.

69 Franck, E. and Jungwirth, C. (2002) Reconciling investors and donators: The governance
structure of open source, Working Paper (No. 8) Lehrstuhl für Unternehmensführung und -
politik, Universität Zürich

70 Gacek, C. and Arief, B. (2004) The many meanings of Open Source. IEEE Software, 21(1),
34–40

71 Gall, H., Hajek, K. and Jazayeri, M. (1998) Detection of Logical Coupling Based on Prod-
uct Release History. In Proceedings of the International Conference on Software Mainte-
nance (ICSM ’98)

72 Gallivan, M.J. (2001) Striking a balance between trust and control in a virtual organization:
A content analysis of open source software case studies. Information Systems Journal,
11(4), 277–304

73 Gasser, L. and Ripoche, G. (2003) Distributed Collective Practices and F/OSS Problem
Management: Perspective and Methods. In Conference on Cooperation, Innovation &
Technologie (CITE2003), University de Technologie de Troyes, France, Available from:
http://www.ics.uci.edu/~wscacchi/Papers/UIUC/gasser-ripoche-cite.pdf, Accessed 21 Janu-
ary 2005

25

74 Giddens, A. (1984) The Constitution of Society: Outline of the Theory of Structuration,
Berkeley: University of California

75 Giuri, P., Ploner, M., Rullani, F. and Torrisi, S. (2004) Skills and openness of OSS projects:
Implications for performance, Working paper Laboratory of Economics and Management,
Sant'Anna School of Advanced Studies, Available from: http://www.lem.sssup.it
/WPLem/files/2004-19.pdf, Accessed 21 January 2005

76 González-Barahona, J.M. and Robles, G. (2003) Free Software Engineering: A Field to
Explore. Upgrade, 4(4), 49–54

77 Grabowski, M. and Roberts, K.H. (1999) Risk mitigation in virtual organizations. Organi-
zation Science, 10(6), 704–721

78 Grant, R.M. (1996) Prospering in dynamically-competitive environments: Organizational
capability as knowledge integration. Organizational Science, 7(4), 375–387

79 Grant, R.M. (1996) Toward a knowledge-based theory of the firm. Strategic Management
Journal, 17(Winter), 109–122

80 Graves, T.L. (1998) Inferring Change Effort from Configuration Management Databases
81 Gregory, D. (1989) Presences and absences: Time-space relations and structuration theory.

In Social Theory of Modern Societies: Anthony Giddens and His Critics, Cambridge: Cam-
bridge University Press

82 Griffith, T. and Neale, M.A. (1999) Information Processing and Performance in Tradi-
tional and Virtual Teams: The Role of Transactive Memory, Research Paper (1613) Stan-
ford University Graduate School of Business, Available from:
http://www.gsb.stanford.edu/cebc/pdfs/rp1611.pdf, Accessed 20 January 2005

83 Grishman, R. and Kittredge, R., eds (1986) Analyzing Language in Restricted Domains:
Sublanguage Description and Processing, Lawrence Erlbaum

84 Guzzo, R.A. and Dickson, M.W. (1996) Teams in organizations: Recent research on per-
formance effectiveness. Annual Review of Psychology, 47, 307–338

85 Hallen, J., Hammarqvist, A., Juhlin, F. and Chrigstrom, A. (1999) Linux in the workplace.
IEEE Software, 16(1), 52–57

86 Halloran, T.J. and Scherlis, W.L. (2002) High Quality and Open Source Software Practices.
In Meeting Challenges and Surviving Success: 2nd ICSE Workshop on Open Source Soft-
ware Engineering, Orlando, FL, Available from: http://www.fluid.cs.cmu.edu:8080/Fluid
/fluid-publications/HalloranScherlis.pdf, Accessed 21 January 2005

87 Hann, I.-H., Roberts, J., Slaughter, S. and Fielding, R. (2002) Economic incentives for par-
ticipating in open source software projects. In Proceedings of the Twenty-Third Interna-
tional Conference on Information Systems, pp. 365–372

88 Hann, I.-H., Roberts, J. and Slaughter, S.A. (2004) Why developers participate in open
source software projects: An empirical investigation. In Twenty-Fifth International Confer-
ence on Information Systems, pp. 821–830, Washington, DC

89 Hare, A.P. (1976) Handbook of Small Group Research, New York: Free Press
90 Hayes, J. and Allinson, C.W. (1998) Cognitive style and the theory and practice of individ-

ual and collective learning in organizations. Human Relations, 51(7), 847-871
91 Hecker, F. (1999) Mozilla at one: A look back and ahead. Available from:

http://www.mozilla.org/mozilla-at-one.html
92 Heckman, R. and Annabi, H. (2003) A content analytic comparison of FTF and ALN case-

study discussions. In 36th Annual Hawaii International Conference on System Sciences
(HICSS'03), Big Island, Hawaii, IEEE Press, Available from: http://csdl.computer.org
/comp/proceedings/hicss/2003/1874/01/187410003aabs.htm

26

93 Hemetsberger, A. and Reinhardt, C. (2004) Sharing and Creating Knowledge in Open-
Source Communities: The case of KDE. In The Fifth European Conference on Organiza-
tional Knowledge, Learning, and Capabilities, Innsbruck, Austria

94 Herbsleb, J.D. and Grinter, R.E. (1999) Architectures, coordination, and distance:
Conway's law and beyond. IEEE Software(September/October), 63–70

95 Herbsleb, J.D. and Grinter, R.E. (1999) Splitting the organization and integrating the code:
Conway’s law revisited. In Proceedings of the International Conference on Software Engi-
neering (ICSE ‘99), pp. 85–95, Los Angeles, CA: ACM

96 Herbsleb, J.D., Mockus, A., Finholt, T.A. and Grinter, R.E. (2001) An empirical study of
global software development: Distance and speed. In Proceedings of the International Con-
ference on Software Engineering (ICSE 2001), pp. 81–90, Toronto, Canada:

97 Herring, S.C., ed. (1996) Computer-Mediated Communication: Linguistic, Social, and
Cross-Cultural Perspectives, John Benjamins

98 Hertel, G., Niedner, S. and Herrmann, S. (n.d.) Motivation of Software Developers in Open
Source Projects: An Internet-based Survey of Contributors to the Linux Kernel University
of Kiel

99 Howison, J. and Crowston, K. (2004) The perils and pitfalls of mining SourceForge. In
Presentation at the Workshop on Mining Software Repositories, 26th International Confer-
ence on Software Engineering, Edinburgh, Scotland

100 Huber, G.P. (1991) Organizational learning: The contributing processes and the literatures.
Organization Science, 2(1), 88–115

101 Humphrey, W.S. (2000) Introduction to Team Software Process: Addison-Wesley
102 Jarvenpaa, S.L. and Leidner, D.E. (1999) Communication and trust in global virtual teams.

Organization Science, 10(6), 791–815
103 Jørgensen, N. (2001) Putting it all in the trunk: incremental software development in the

FreeBSD open source project. Information Systems Journal, 11(4), 321–336
104 Kemerer, C.F. and Slaughter, S. (1999) An Empirical Approach to Studying Software Evo-

lution. IEEE Transactions on Software Engineering, 25(4)
105 Kiesler, S. and Cummings, J. (2002) What do we know about proximity and distance in

work groups? A legacy of research. In Distributed Work (Hinds, P. and Kiesler, S., eds.),
pp. 57–80, Cambridge, MA: MIT Press

106 Koch, S. and Schneider, G. (2002) Effort, co-operation and co-ordination in an open source
software project: GNOME. Information Systems Journal, 12(1), 27–42

107 Kogut, B. and Metiu, A. (2001) Open-source software development and distributed innova-
tion. Oxford Review of Economic Policy, 17(2), 248–264

108 Kraut, R.E., Steinfield, C., Chan, A.P., Butler, B. and Hoag, A. (1999) Coordination and
virtualization: The role of electronic networks and personal relationships. Organization Sci-
ence, 10(6), 722–740

109 Kraut, R.E. and Streeter, L.A. (1995) Coordination in software development. Communica-
tions of the ACM, 38(3), 69–81

110 Krishnamurthy, S. (2002) Cave or Community? An Empirical Examination of 100 Mature
Open Source Projects University of Washington, Bothell

111 Kwasnik, B.H. and Crowston, K. (2004) A framework for creating a facetted classification
for genres: Addressing issues of multidimensionality. In Proceedings of the Hawai'i Inter-
national Conference on System Science (HICSS), Big Island, Hawai'i:

112 Kwasnik, B.H. and Crowston, K. (In press) Genres of digital documents: Introduction to
the special issue. Information, Technology & People

27

113 Langfield-Smith, K. (1992) Exploring the need for a shared cognitive map. Journal of
management studies, 29(3), 349-368

114 Lanzara, G.F. and Morner, M. (2004) Making and sharing knowledge at electronic cross-
roads: the evolutionary ecology of open source. In 5th European Conference on Organiza-
tional Knowledge, Learning and Capabilities, Innsbruck, Austria

115 Lee, G.K. and Cole, R.E. (2003) From a firm-based to a community-based model of
knowledge creation: The case of Linux kernel development. Organization Science, 14(6),
633–649

116 Leibovitch, E. (1999) The business case for Linux. IEEE Software, 16(1), 40–44
117 Lerner, J. and Tirole, J. (2001) The open source movement: Key research questions. Euro-

pean Economic Review, 45, 819–826
118 Levesque, L.L., Wilson, J.M. and Wholey, D.R. (2001) Cognitive divergence and shared

mental models in software development project teams. Journal of Organization Behavior,
22, 135–144

119 Liddy, E.D. (2001) Breaking the Metadata Generation Bottleneck. In Joint Conference on
Digital Libraries, Roanoke, VA:

120 Liddy, E.D. (2001) Data-Mining, MetaData, and Digital Libraries. In DIMACS Workshop
on Data Analysis and Digital Libraries, Rutgers University:

121 Liddy, E.D. (2003) Automating and Evaluating Automatic Metadata Generation. In Search
Engine Conference, Boston, MA:

122 Liddy, E.D. (2003) Automating and Evaluating Metadata Generation. In Libraries in the
Digital Age Conference, Dubrovnik, Croatia.:

123 Liddy, E.D. (2003) Automating and Evaluating Metadata Generation. In InfoToday 2003
Conference, New York, NY:

124 Liddy, E.D. (2003) Natural Language Processing for Text Extraction Applications. Key-
note Speaker. In Thomson 8th Annual Text Summit, Minneapolis, MN

125 Liddy, E.D. and Finneran, C. (2003) Developing and Evaluating Metadata for Improved
Information Access. In NSF-NSDL Annual Meeting, Washington, DC:

126 Liddy, E.D. and Finneran, C. (2003) MetaTest: Three-Way Evaluation of Automatic Meta-
data Generation. In Joint IMLS/NSDL Conference

127 Liddy, E.D., Gay, G., Harwell, S. and Finneran, T. (2002) A Modest (Metadata) Proposal.
In Joint Conference on Digital Libraries, Portland, OR:

128 Liddy, E.D., Jorgensen, C.L., Sibert, E.E. and Yu, E.S. (1991) Sublanguage grammar in
natural language processing. In Proceedings of RIAO '91 Conference, Barcelona:

129 Liddy, E.D., Jorgensen, C.L., Sibert, E.E. and Yu, E.S. (1993) A sublanguage approach to
Natural Language Processing for an expert system. Information Processing & Manage-
ment, 29(5), 633–645

130 Ljungberg, J. (2000) Open Source Movements as a Model for Organizing. European Jour-
nal of Information Systems, 9(4)

131 Madey, G., Freeh, V. and Tynan, R. (2002) The Open Source Software development phe-
nomenon: An analysis based on social network theory. In Proceedings of the Eighth
Americas Conference on Information Systems, pp. 1806–1815

132 Maier, G.W., Prange, C. and Rosenstiel, L. (2001) Psychological perspectives on organiza-
tional learning. In Handbook of Organizational Learning and Knowledge (Dierkes, M. et
al., eds.), pp. 14–34, New York: Oxford Press

133 Majchrzak, A. and Malhotra, A. (2004) Virtual Workspace Technology Use and Knowl-
edge-Sharing Effectiveness in Distributed Teams: The Influence of a Team's Transactive

28

Memory Marshall School of Business, University of Southern California, Available from:
http://oz.stern.nyu.edu/seminar/0928.pdf, Accessed 23 January 2004

134 March, J.G., Schulz, M. and Zhou, X. (2000) The Dynamics of Rules: Change in Written
Organizational Codes, Stanford, CA: Stanford University Press

135 Mark, G. (2002) Conventions for coordinating electronic distributed work: A longitudinal
study of groupware use. In Distributed Work (Hinds, P. and Kiesler, S., eds.), pp. 259–282,
Cambridge, MA: MIT Press

136 Markus, M.L., Manville, B. and Agres, E.C. (2000) What makes a virtual organization
work? Sloan Management Review, 42(1), 13–26

137 Martins, L.L., Gilson, L.L. and Maynard, M.T. (2004) Virtual teams: What do we know
and where do we go from here? Journal of Management, 30(6), 805-835

138 Miles, M.B. and Huberman, A.M. (1994) Qualitative Data Analysis: An Expanded Source-
book, Thousand Oaks: Sage Publications

139 Mockus, A., Fielding, R.T. and Herbsleb, J.D. (2000) A case study of Open Source
Software development: The Apache server. In Proceedings of ICSE’2000, pp. 11 pages

140 Mockus, A., Fielding, R.T. and Herbsleb, J.D. (2002) Two Case Studies Of Open Source
Software Development: Apache And Mozilla. ACM Transactions on Software Engineering
and Methodology, 11(3), 309–346

141 Mohammed, S. and Dumville, B.C. (2001) Team mental models in a team knowledge
framework: Expanding theory and measurement across disciplinary boundaries. Journal of
Organizational Behavior, 22(2), 89–106

142 Moody, G. (2001) Rebel code—Inside Linux and the open source movement, Cambridge,
MA: Perseus Publishing

143 Moon, J.Y. and Sproull, L. (2000) Essence of distributed work: The case of Linux kernel.
First Monday, 5(11)

144 Nadkarni, S. and Nah, F.F.-H. (2003) Aggregated causal maps: An approach to elicit and
aggregate the knowledge of multiple experts. Communications of the Association for In-
formation Systems, 12, 406–436

145 Nejmeh, B.A. (1994) Internet: A strategic tool for the software enterprise. Communications
of the ACM, 37(11), 23–27

146 Newman, M. and Robey, D. (1992) A social process model of user-analyst relationships.
MIS Quarterly, 16(2), 249–266

147 O'Leary, M., Orlikowski, W.J. and Yates, J. (2002) Distributed work over the centuries:
Trust and control in the Hudson's Bay Company, 1670–1826. In Distributed Work (Hinds,
P. and Kiesler, S., eds.), pp. 27–54, Cambridge, MA: MIT Press

148 O'Mahony, S. and Ferraro, F. (2003) Managing the Boundary of an ‘Open’ Project. In
Santa Fe Institute (SFI) Workshop on The Network Construction of Markets (Padgett, J.
and Powell, W., eds.), Available from: http://opensource.mit.edu/papers
/omahonyferraro.pdf

149 Ocker, R.J. and Fjermestad, J. (2000) High versus low performing virtual design teams: A
preliminary analysis of communication. In Proceedings of the 33rd Hawaii International
Conference on System Sciences, pp. 10 pages

150 Orlikowski, W.J. (1992) The duality of technology: Rethinking the concept of technology
in organizations. Organization Science, 3(3), 398–427

151 Orlikowski, W.J. (2000) Using technology and constituting structures: A practice lens for
studying technology in organizations. Organization Science, 11(4), 404–428

29

152 Orlikowski, W.J. (2002) Knowing in practice: Enacting a collective capability in
distributed organizing. Organization Science, 13(3), 249–273

153 Orr, J. (1996) Talking About Machines: An Ethnography of a Modern Job, Ithaca, NY: ILR
Press

154 O’Leary, M. and Cummings, J. (2002) The Spatial, Temporal, and Configurational Charac-
teristics of Geographic Dispersion in Teams. In Academy of Management Conference,
Denver, CO

155 O’Reilly, T. (1999) Lessons from open source software development. Communications of
the ACM, 42(4), 33–37

156 Perry, D.E., Staudenmayer, N.A. and Volta, L.G. (1994) People, organizations, and process
improvement. IEEE Software, 11(4), 36–45

157 Pfaff, B. (1998) Society and open source: Why open source software is better for society
than proprietary closed source software. Available from: http://www.msu.edu/user
/pfaffben/writings/anp/oss-is-better.html

158 Prasad, G.C. (n.d.) A hard look at Linux’s claimed strengths…. Available from:
http://www.osopinion.com/Opinions/GaneshCPrasad/GaneshCPrasad2-2.html

159 Rambow, O., Shrestha, L., Chen, J. and Laurdisen, C. (2004) Summarizing Email Threads.
In Proceedings of HLT-NAACL, pp. 105–108

160 Raymond, E.S. (1998) The cathedral and the bazaar. First Monday, 3(3)
161 Raymond, E.S. (1998) Homesteading the noosphere.
162 Rentsch, J.R. and Klimonski, R.J. (2001) Why do ‘great minds’ think alike? Antecedents of

team member schema agreement. Journal of Organizational Behavior, 22(2), 107–120
163 Robey, D., Khoo, H.M. and Powers, C. (2000) Situated-learning in cross-functional virtual

teams. IEEE Transactions on Professional Communication(Feb/Mar), 51–66
164 Rossi, M.A. (2004) Decoding the “Free/Open Source (F/OSS) Software Puzzle”: A survey

of theoretical and empirical contributions, Working paper (424) Università degli Studi di
Siena, Dipartimento Di Economia Politica

165 Sager, N., Friedman, C. and Lyman, M.S. (1987) Medical Language Processing: Computer
Management of Narrative Data, Reading, Mass: Addison-Wesley

166 Sagers, G.W. (2004) The influence of network governance factors on success in open
source software development projects. In Twenty-Fifth International Conference on Infor-
mation Systems, pp. 427–438, Washington, DC

167 Sagers, G.W., Wasko, M.M. and Dickey, M.H. (2004) Coordinating Efforts in Virtual
Communities: Examining Network Governance in Open Source. In Tenth Americas Con-
ference on Information Systems, pp. 2695–2698, New York, NY

168 Sarason, Y. (1995) A model of organizational transformation: The incorporation of organi-
zational identity into a structuration theory framework. Academy of Management Jour-
nal(Best papers proceedings), 47–51

169 Sawyer, S. (2000) A Social Analysis of Software Development Teams: Three Models and
their Differences. In The 2000 Americas Conference on Information Systems (AMCIS
2000), pp. 1645–1649

170 Sawyer, S., Crowston, K., Wigand, R. and Allbritton, M. (2003) The social embeddedness
of transactions: Evidence from the residential real estate industry. The Information Society,
19(2), 135–154

171 Sawyer, S. and Guinan, P.J. (1998) Software development: Processes and performance.
IBM Systems Journal, 37(4), 552–568

30

172 Scacchi, W. (1991) The software infrastructure for a distributed software factory. Software
Engineering Journal, 6(5), 355–369

173 Scacchi, W. (2002) Understanding the requirements for developing Open Source Software
systems. IEE Proceedings Software, 149(1), 24–39

174 Scacchi, W. (2004) Free/Open Source Software Development Practices in the Computer
Game Community. IEEE Software, 21(1), 56–66

175 Seaman, C.B. and Basili, V.R. (1997) Communication and Organization in Software
Development: An Empirical Study Institute for Advanced Computer Studies, University of
Maryland

176 Shepard, T., Lamb, M. and Kelly, D. (2001) More testing should be taught. Communication
of the ACM, 44(6), 103–108

177 Stein, E.W. and Vandenbosch, B. (1996) Organizational learning during advanced system
development: Opportunities and obstacles. Journal of Management Information Systems,
13(2), 115–136

178 Stewart, K.J. and Ammeter, T. (2002) An exploratory study of factors influencing the level
of vitality and popularity of open source projects. In Proceedings of the Twenty-Third In-
ternational Conference on Information Systems, pp. 853–857

179 Stewart, K.J. and Gosain, S. (2001) Impacts of ideology, trust, and communication on ef-
fectivness in open source software development teams. In Twenty-Second International
Conference on Information Systems, pp. 507–512, New Orleans, LA

180 Sutanto, J., Kankanhalli, A. and Tan, B.C.Y. (2004) Task coordination in global virtual
teams. In Twenty-Fifth International Conference on Information Systems, pp. 807–820,
Washington, DC

181 Swieringa, J. and Wierdsma, A. (1992) Becoming a Learning Organization, Reading, MA:
Addison-Wesley

182 Tuomi, I. (2002) Evolution of the Linux Credits File: Methodological Challenges and Ref-
erence Data for Open Source Research. Available from: http://www.jrc.es/~tuomiil/articles
/EvolutionOfTheLinuxCreditsFile.pdf, Accessed 15 November

183 Turner, W., Sansonnet, J.-P., Gasser, L. and Ripoche, G. (2004) Confidence-based organi-
zational metrics. In Workshop on Distributed Collective Practice: Building new Directions
for Infrastructural Studies, CSCW 2004, Available from: http://www.limsi.fr/Individu
/turner/DCP/Chicago2004/Turner.pdf, Accessed 23 January 2005

184 Valloppillil, V. (1998) Halloween I: Open Source Software. Available from:
http://www.opensource.org/halloween/halloween1.html

185 Valloppillil, V. and Cohen, J. (1998) Halloween II: Linux OS Competitive Analysis. Avail-
able from: http://www.opensource.org/halloween/halloween2.html

186 van de Ven, A.H. and Poole, M.S. (1990) Methods for studying innovation development in
the Minnesota Innovations Research Program. Organization Science, 1(3), 313–335

187 van Fenema, P.C. (2002) Coordination and control of globally distributed software pro-
jects, Doctoral Dissertation, Erasmus Research Institute of Management, Erasmus Univer-
sity

188 Vixie, P. (1999) Software engineering. In Open sources: Voices from the open source revo-
lution (Di Bona, C. et al., eds.), San Francisco: O’Reilly

189 von Hippel, E. (2001) Innovation by user communities: Learning from open-source soft-
ware. Sloan Management Review(Summer), 82–86

190 von Hippel, E. and von Krogh, G. (2002) Exploring the Open Source Software Phenome-
non: Issues for Organization Science Sloan School of Management, MIT

31

191 von Hippel, E. and von Krogh, G. (2003) Open Source Software and the "Private-
Collective" Innovation Model: Issues for Organization Science. Organization Science,
14(2), 209–213

192 von Krogh, G., Spaeth, S. and Lakhani, K.R. (2003) Community, Joining, and Specializa-
tion in Open Source Software Innovation: A Case Study. Research Policy, 32(7), 1217–
1241

193 Walsham, G. (1993) Interpreting Information Systems in Organizations, Chichester: John-
Wiley

194 Walton, R.E. and Hackman, J.R. (1986) Groups under contrasting management strategies.
In Designing Effective Work Groups (Goodman, P.S. and Associates, eds.), pp. 168–201,
San Francisco, CA: Jossey-Bass

195 Walz, D.B., Elam, J.J. and Curtis, B. (1993) Inside a software design team: knowledge ac-
quisition, sharing, and integration. Communications of the ACM, 36(10), 63–77

196 Watson-Manheim, M.B., Chudoba, K.M. and Crowston, K. (2002) Discontinuities and con-
tinuities: A new way to understand virtual work. Information, Technology and People,
15(3), 191–209

197 Wayner, P. (2000) Free For All, New York: HarperCollins
198 Webb, E. and Weick, K.E. (1979) Unobtrusive measures in organizational theory: A re-

minder. Administrative Science Quarterly, 24(4), 650–659
199 Weick, K.E. and Roberts, K. (1993) Collective mind in organizations: Heedful interrelating

on flight decks. Administrative Science Quarterly, 38(3), 357–381
200 Yamauchi, Y., Yokozawa, M., Shinohara, T. and Ishida, T. (2000) Collaboration with lean

media: How open-source software succeeds. In Proceedings of CSCW’00, pp. 329–338,
Philadelphia, PA:

201 Yilmazel, O., Finneran, C.M. and Liddy, E.D. (2004) MetaExtract: An NLP System to
Automatically Assign Metadata. In Proceedings of the 2004 Joint Conference on Digital
Libraries

202 Yoo, Y. and Kanawattanachai, P. (2001) Developments of transactive memory systems and
collective mind in virtual teams. International Journal of Organizational Analysis, 9(2),
187–208

