
Running Head: Coordination in Open Source Software 2.0

 1

AN ACTOR-NETWORK APPROACH TO COORDINATION

IN OPEN SOURCE SOFTWARE 2.0

Sangseok You*

Department of Information Systems and Operations Management

HEC Paris

you@hec.fr

Kevin Crowston

School of Information Studies

Syracuse University

crowston@syr.edu

Jeffrey Saltz

School of Information Studies

Syracuse University

jsaltz@syr.edu

Yatish Hegde

School of Information Studies

Syracuse University

yhegde@syr.edu

* Corresponding Author

Running Head: Coordination in Open Source Software 2.0

 2

AN ACTOR-NETWORK APPROACH TO COORDINATION IN OPEN SOURCE

SOFTWARE 2.0

ABSTRACT

Open source software is increasingly driven by a combination of independent and

professional developers, the former volunteers and the later hired by a software company to

contribute to the project to support commercial product development. This mix of developers has

been referred to as OSS 2.0. However, we do not fully understand the coordination spanning

individuals, teams, and organizations in OSS 2.0. Using Actor-Network Theory (ANT), we

describe how coordination and power dynamics unfold and how technological artifacts both

display actions and mediate coordination efforts. Internal coordination within an organization

was reported to create competing networks against the network for the whole OSS community by

breaking the alignments of interests. ANT shows how software development tools and code, as

active actors, exercise agency in attracting developers to work on problems and informing the

layers of collaboration. We discuss the theoretical and practical implications of the changing

nature of OSS.

Keywords: OSS 2.0, open source software, actor-network theory, ANT, and coordination

Running Head: Coordination in Open Source Software 2.0

 3

INTRODUCTION

Open source software (OSS) developmenti was originally viewed by researchers as a

collaborative outcome of individuals working independently [5]. In this view, individual

developers, dispersed around the world, work together toward a software product as a common

goal. OSS development is interesting because it is an example of collaboration with dispersed

individuals that is successful despite the absence of a formal structure and leadership. The

distributed nature of OSS development poses interesting questions about how it addresses

challenges such as discontinuities in work, low coherence in work settings, and difficulties in

developing shared mental models among participants [40,43]. Research in this tradition showed,

for example, that altruistic motivations are a major driving force that attracts individual

developers and keeps them engaged throughout the project lifecycle [2,43,45].

More recently though, there has been growing recognition that OSS development has

been transformed by the involvement of participants other than individual developers. Several

companies, including both software firms such as Microsoft and large technology-driven

commercial enterprises such as Walmart, use open source software for their business and make

their software open source for anyone to benefit from it [22]. In 2018, IBM announced that they

would acquire GitHub, one of the most popular source code control and collaboration platforms

for open source developers and companies [23].

Researchers also recognize the increasing role of companies that support a community

and benefit from the collective work outcomes [5,11,24]. In large OSS communities (e.g.,

Apache Spark, Hadoop, and TensorFlow), many developers are deployed to the community by

their employer to represent and advance the company’s interests. Such transformation was

referred to as OSS 2.0, with an emphasis on the impacts of company involvement [24].

Running Head: Coordination in Open Source Software 2.0

 4

We are interested in how the involvement of software companies has changed the

coordination and the structure of collaboration in these communities. Despite the growing

recognition of these changes, research has not completely addressed the nature of the emergent

coordination network, which may not be explained by our traditional view on OSS development

as a collaborative outcome of individuals’ voluntary participation.

In this paper, we focus on coordination in OSS that embraces not only individual

developers but also company teams. We define coordination broadly as managing dependencies

[13,14]. Coordination thus encompasses how various entities in open source communities, such

as individual developers, company teams, and their members, align their interests, desires, and

actions among themselves during OSS development [13,40]. The addition of software companies

and company-sponsored teams engenders new levels of dependencies beyond the individual

level, implying the need for coordination across teams and organizations [5,24].

The addition of company teams also alters the roles of technological artifacts in OSS

development [11,41]. OSS development, as a largely distributed sociotechnical system, relies

heavily on technological artifacts, such as communication tools, source code control systems,

and the code itself [4,44]. Although how distributed individuals handle dependencies is well

studied in general, research still lacks evidence on coordination in the context of OSS 2.0

[14,35]. Moreover, by adding the corporate players to the scene, coordination through artifacts in

the recent OSS development warrants an investigation with a new approach [44]. Therefore, we

pose two research questions:

RQ1: How do individual developers, company teams, and software companies

coordinate in OSS 2.0?

RQ2: How do technological artifacts influence coordination in OSS 2.0?

Running Head: Coordination in Open Source Software 2.0

 5

To answer the research questions, we conducted interviews with developers from a range

of OSS projects. We analyzed this data through the lens of Actor-Network Theory (ANT), which

addresses the interplay between the social and the technical in a sociotechnical system [33]. ANT

is suitable to identify the emergence of actors and actor-networks across different levels of

interactions. Besides, ANT treats objects equally as an actor [6,28,33], thus providing valuable

analytic perspectives from which to investigate the roles of technological artifacts.

By looking through the lens offered by ANT, we examined how dependencies in code

changes were managed and what roles technological artifacts played in OSS 2.0. Our analysis

described various actors in OSS communities. Among those, we observed that company teams

generated boundaries around themselves, which engendered competing networks against the

network of coordination across the whole OSS community. Further, we found that artifacts, such

as code, were centerpieces of coordination by exercising agency over human actors. Therefore, a

significant contribution of this paper is a taxonomy of the various actors and their influence

network for coordination across different levels manifested by technological artifacts.

BACKGROUND

Coordination in Open Source Software Development

OSS development has been studied by many scholars (see [1,15] for reviews). OSS

communities have been viewed as a unique context to study coordination in distributed work in

particular due to the nature of open collaboration [29]. OSS refers to the software release under

an “open source” license that allows inspection, modification, and redistribution of the source

code of the software [24,44]. Many projects are also open in accepting contributions from any

interested developer. The unique “open” nature of OSS engenders numerous challenges in

coordination among developers. For instance, OSS is often developed by distributed teams,

Running Head: Coordination in Open Source Software 2.0

 6

whose team members are located around the world and infrequently meet, relying on

communication tools such as video conferencing, chats, and source code control systems [4,19].

Early OSS developments were driven by voluntary individuals working independently

[5,20]. Thus, coordination in OSS has been understood mainly as how distributed individuals

manage dependencies [40]. For example, superposition was proposed as a core mechanism of

OSS collaboration, by which developers contribute small chunks of code (i.e., atomic commits)

to the existing codebase and build on existing functionality [31]. Also, artifacts, such as patch

developments and feature requests, were found to facilitate coordination by connecting

individuals with similar motivations into cohesive distributed teams [44].

Theory of coordination highlights that distributed developers manage dependencies

through sociotechnical affordances of various artifacts [14,15]. For example, documents,

including bug reports, provide visibility and accountability of the current state of the work and

inform developers of what can be done next [14]. As a result, developers can often coordinate

their actions by reference to the code rather than requiring explicit discussion, a process akin to

the biological process of stigmergy [4], meaning coordination through signs.

However, current research in OSS projects demonstrates that company teams play an

increasing role in development in many projects [21,39]. Fitzgerald [24] suggested that the

transformation by the company involvement occur across the whole OSS circulation, including

development life cycle, product domains, business models, product support, and licensing.

Indeed, software companies are shown to reduce development cost by open-sourcing the effort

and become more innovative by engaging with OSS communities [2]. Schaarschmidt, Walsh,

and von Kortzfleisch [39] described various ways in which firms influence OSS projects.

Germonprez et al. [26] found that software designers from software companies can benefit from

Running Head: Coordination in Open Source Software 2.0

 7

the engagement with OSS communities for a more productive and creative design for their

products. Mäenpää et al. [37] viewed a OSS community as a hybrid system that embed software

companies and governments as part of a large software ecosystem.

Despite the increasing involvement of company teams in OSS, research still lacks

empirical evidence on how the various actors in the OSS projects manage dependencies to turn

the collective effort into a software product [36]. Part of the reason is the complexity in the

collaboration among the different actors and stakeholders in OSS communities [36]. The

addition of software companies in OSS can change coordination because their motivations and

work styles may not align with a given OSS community [2]. Hence, understanding the

collaboration network in OSS is often incomplete or does not include important actors [30,31].

Thus, the aim of this paper is to better understand OSS by identifying actors in the scene and

mapping them in a complex coordination network using ANT.

Actor-Network Theory

We employed actor-network theory (ANT) as a theoretical framework to describe the

pattern of coordination in OSS projects (despite its name, ANT is more of a descriptive method

than a theory). Originating from science technology studies (STS), actor-network theory has

been a useful lens to examine the relationships and dynamism in sociotechnical systems by

illustrating how interests, desires, and agency of different actors interact, compete, and work

together (e.g., [3,28,38]).

ANT was originally created to describe the creation of scientific findings, though it has

been since extended to study other institutions. The original insight was that scientific findings

(and so other institutions) are the product of—and indeed, should be thought of as actually

being—networks of “heterogeneous materials”: the scientists making the findings, but also lab

Running Head: Coordination in Open Source Software 2.0

 8

equipment, supplies, results, papers, etc., all of which must be assembled together to support the

findings. Actors themselves can thus be described as networks, and networks can be actors,

hence the term actor-networks. From the ANT perspective, successful coordination of software

changes can be viewed as building a network that supports the code changes.

In ANT, an actor (derived from a semiotic definition of actant) is defined as an entity that

acts, that is, that makes a difference in the world, or to which activity granted by others [33]. The

ANT approach thus prompts sociotechnical scholars to consider new actors and their behaviors

[38,46]. In that an actor can be literally anything if it is the source of an action, actors can include

both human and non-human entities [33]. This approach prompts scholars to view technological

artifacts as actors, to examine the differences they make to outcomes of interest and to explore

how they are brought into (“enrolled into”) networks.

In analyzing the interchange among actors, ANT makes a distinction between

intermediaries and mediators. Intermediaries simply transfer meaning and information without

altering the actor’s behaviors, intentions, and expectations [33]. Intermediaries are thus

uninteresting for study. In contrast, mediators “transform, translate, distort, and modify the

meaning or the elements they are supposed to carry” [33:39]. A claim of ANT is that more actors

should be viewed as mediators rather than intermediaries. For instance, rather than considering

communication tools as simple intermediaries, faithfully transferring a user’s intentions, we

should look for ways in which the tool transforms those intentions.

Building and then maintaining a network is an ongoing activity. A key concept in ANT is

translation, a process through which diverse actors within an actor-network seek to align others

to their interests to bring together an actor-network [8,34]. As Callon and Latour [10] put it: “By

translation, we understand all the negotiations, intrigues, calculations, acts of persuasion, and

Running Head: Coordination in Open Source Software 2.0

 9

violence, thanks to which an actor or force takes, or causes to be conferred on itself, authority to

speak or act on behalf of another actor or force”.

There are four moments of translation discussed in one of the seminal articles that

describe the application of ANT to scientific research: Problematization, Interessement,

Enrollment, and Mobilization [8]. Problematization refers to a process of identifying, defining,

and describing actors and their interests and actions that revolve around a focal concern within

an actor-network, which is usually labeled as an obligatory passage point (OPP). Interessement

follows the problematization by illustrating “the group of actions by which an entity attempts to

impose and stabilize the other actors [8:207].” Enrollment is a process through which the defined

actors and their actions in problematization and interessement are accepted, negotiated, and

aligned to be included in the actor-network [8]. Callon highlighted that the moments of

translation are not permanent and described mobilization as a process in which the defined actors

and their representativeness can be displaced and modified by other actors as the actor-network

faces consistent updates [8].

Some networks may become sufficiently stable that they become taken for granted or

black-boxed, in much the same way that the details of infrastructure such as electrical power

usually remains unobserved, at least while it is working. This hiding of the details of a network is

the process of punctualization, by which an actor-network is treated for a while as an individual

actor, bracketing the complexity of the whole network with multiple layers of networks [34,38].

Collaborative teams can be an excellent example of punctualization. A team comprises several

individual team members as actors, each of whom possesses own interests. However, the team

also manifests its own actions as a result of the synthesized actions of the team members. In this

case, teams deserve to be viewed as an individual actor that embeds interactions and networks of

Running Head: Coordination in Open Source Software 2.0

 10

its members. Punctualization allows researchers not only to reduce the complexity of the multi-

layered network but also to view in different perspectives by inviting the punctualized package to

the network. However, the simplification should be precarious, as Law argued [34], by paying

attention to the individual actors within the punctualized group. It is because not always the

group as a network package summarizes and represents all individual actors in it.

Finally, technological artifacts often display properties of the irreversibility, meaning

eliminating possibilities to go back to possible alternative states once inscribed (e.g., software

standards) [7,46]. As Bowker and Star argued [7], software standards, for example, are the

inscription of values, opinions, decisions, and interests of developers, users, markets, and

policymakers, negotiated during the process of its creation. Thus, software standards are the

materialization of social interactions among actors, tend to persist within the network, and thus

often are taken for granted by actors.

Only a handful of studies have employed ANT to study the workings of OSS projects.

One example is Ducheneaut [18], who illustrated the socialization processes of new participants

in an OSS community. Despite this lack of use, the ANT approach is not only suitable but also

useful for studying OSS communities for several reasons. First, research has noted the increasing

presence of company teams in OSS communities [24,26]. The ANT approach suggests

describing the effects of companies on development by suggesting that we consider them as a

new actor and examine how their behaviors and agency interact with others. ANT is particularly

useful in this effort because it makes no a priori assumptions about the size of actors [10] but

instead views the size as an outcome. Second, although previous studies have noted the vital role

in the open collaboration with technological artifacts, such as source code control systems and

communication tools, past research has viewed them as tools that simply convey social cues [16]

Running Head: Coordination in Open Source Software 2.0

 11

rather than as actors in their own right, as in ANT.

METHOD

Data Collection

We conducted semi-structured interviews to obtain an in-depth understanding of

coordination in OSS communities. Our research team recruited 20 developers from several OSS

projects. Because of the exploratory and inductive nature of the study, our goal was to develop a

diverse sample of subjects that spanned multiple heterogeneous contexts, rather than a

representative sample of a focused population.

The recruitment of the subjects had two phases. In the initial stage of the study (Phase 1),

we employed a snowball approach by getting referrals from attendees of relevant conferences.

For instance, one of the authors attended ApacheConii North America in 2017 and was

introduced to several contact developers at the venue. Our data includes four subjects (e.g., P14,

P15, P16, and P18) recruited at this stage. These initial points of contact were used to develop

and validate the interview protocols and to identify major actors in OSS communities.

In the main part of the study (Phase 2), we posted recruitment solicitations to developer

mailing lists of projects with varying degrees of community size, activity levels, and history.

Sixteen subjects were recruited through this method. The interviews were conducted based on

the protocol developed from the initial interviews at Phase 1, which included questions regarding

subjects’ professional background, general descriptions on OSS projects they contributed to,

software development tools used for individual work and teamwork, and how they managed

dependencies with other developers. Each interview lasted about an hour, either in person or

online. Interviews were audio-recorded and then transcribed.

Subjects were diverse regarding tenure in OSS communities, employment type, and

Running Head: Coordination in Open Source Software 2.0

 12

participating projects (Table 1). Most of them had more than one year of experience of

participating in open source communities. Four subjects have been participating in open source

communities as voluntary individual developers, while sixteen subjects have been affiliated with

a for-profit company and paid by them for the contribution. Subjects were based in several

countries, including Canada, USA, Thailand, South Korea, India, and Germany.

Because subjects expressed concerns regarding the possibility of being identified by peer

developers of their open source communities, some projects affiliations had to remain

unspecified in this study. Hence, we do not show all subjects’ specific affiliations, and in

quotations, we use pseudonyms in place of the names of individuals and software companies.

=====Table 1 here====

Data Analysis and Analytical Frame

The transcripts were coded applying an inductive coding approach to identify themes

emerging across the subjects [12]. The initial coding was an iterative process, as we tried to

identify themes related to actors, their interactions, and networks. Through this process, we

discovered themes related to intentions, interests, actions of people, and the roles of

technological artifacts. We then employed the open coding to obtain 18 high-level categories and

generate a few running hypotheses. Our research team discussed consistently throughout the data

analysis. During the theoretical saturation across multiple iterations of coding and categorization,

we noticed that several ANT concepts emerged from our data. As we further analyzed our data,

we identified distinctive patterns to be categorized into the core concepts of ANT. The actor-

network as an outcome of the analysis was repeatedly revised and evolved. The analysis

continued until the data were theoretically saturated.

Running Head: Coordination in Open Source Software 2.0

 13

FINDINGS

We present our findings organized by the key concepts of ANT. First, we provide a list of

actors and define the obligatory passage point (OPP) as a mutual concern across the actors. Then

we present descriptions of their interests as a process of problematization and interessement.

Specifically, as an effort of illustrating the interessement, we also discuss how the actors align

and negotiate their interests with other actors within the network by showing their struggles to

juggle between competing interests as an individual actor and an element of a punctualized

group. Then, we discuss the enrollment of the actors through which the non-human actors

demonstrate agency and play active roles in attracting and enrolling other actors to the network.

Interdefinition of the Actors and Obligatory Passage Point (OPP)

Various actors emerged to play significant roles in open source collaboration and

manifested socio-technical issues associated with other actors. As ANT suggests, we did not

intentionally isolate technological artifacts from the network but tried to ascribe as much of

agency to them as to human actors. We identified four human actors: contributors, committers,

company teams, and software companies. These actors are interconnected, as an individual may

be affiliated with a company team in an organization. On the other hand, code and software

development tools were identified as non-human actors. They emerged as integral part of

understanding coordination, in that they delivered signals on what needed to be done and

illuminated the power dynamics.

 The whole series of actors are participating in a problem by establishing their identities

and links between them – building an effective open source software product with few errors and

bugs in a community. We call this mutual concern across the actors the obligatory passage point

(OPP). Table 2 gives working definitions of each actor we identified and their representative

Running Head: Coordination in Open Source Software 2.0

 14

quotes best illustrating their characteristics.

=====Table 2 here====

Description of Actors and Interests: Problematization

Contributors and Committers

Following the definition by Apache Software Foundation (ASFiii), a contributoriv is

defined as “anyone who wants to contribute (code, documentation, tests, ideas, anything!) to any

project.” All subjects were a contributor at least in one OSS project. In our data, code and feature

ideas were more prominent than other types of contribution. Most participants in an OSS project

began as a contributor. Our subjects identified themselves as contributors based on the amount of

effort put forth and the size of the changes in code accepted and merged into the system. P20 had

a clear role perception: “I think my role was to code for the project. I am the contributor, I would

say. Whatever ideas they give, I have taken inputs, and I made sure it’s gonna be user-friendly to

them. I would say I’m a contributor.” P9 also identified himself as a contributor in one project

by “help[ing] with actual code, identify[ing] bugs, and help[ing] to fix those bugs.”

On the other hand, committers are individuals who have permissions to make actual

changes to the shared source code of an OSS project. Their rights regarding the source code

involved both writing code and adding changes submitted by contributors to the codebase (i.e.,

making commits). In our data, there were twelve subjects who were committers in at least one

OSS project (see Table 2). The committers in our data had more substantial involvement and

exercised more power in their projects than contributors did, by fulfilling several responsibilities:

selecting issues to solve, reviewing changes submitted by contributors, accepting and rejecting

the changes, and writing code by themselves (P2, P4, and P5). P4 defined a committer: “I’ve

been a committer, as in someone who can actually change the source code and has control over

Running Head: Coordination in Open Source Software 2.0

 15

the source code.” As P9 described, committers handle “virtually every one of the pull requests

that go into the project, I’m either committing myself because I wrote it and somebody else is

reviewing it, or vice versa.”

These roles were not exclusive in a person, and those who work for multiple projects

could have different roles by project. For instance, P18 has been working in OSS projects for 19

years, and his role involved being on the project management committee (PMC) for an Apache

project while still contributing code to another OSS project as an individual contributor. The

multitude of involvement in projects was common across our data and was more prominent

among people who had longer tenure in the OSS communities (e.g., P1, P3, P4, P9, P11, P14,

and P18). P3 mentioned having membership in multiple projects: “The [Project A] is the one I’m

heavily involved in, and the [Project B] is the one that I’m a small-time contributor for.” P11

was also involved in several projects and explained different levels of ownership and

involvement: “There have been some projects, which I have worked in small teams, but here,

most of them are my own projects.”

Company teams

In this study, a company team refers to a group of people in a company, who work

together on the same module of a software product. A company team in this study should be

conceptually distinguished from a network of people collaborating on the same module of an

OSS with a perceived team membership but without a common affiliation. Among the twenty

subjects, sixteen indicated that they were paid to work on an OSS component of a product of

their organization. The other four subjects were not affiliated with a for-profit organization and

contributed voluntarily.

Team size varied from small with 3-4 people (e.g., P2, P10) to large with 7-8 people

Running Head: Coordination in Open Source Software 2.0

 16

(e.g., P8, P13, P16). Our subjects had responsibilities for a component of a software product of

their company, which was closely related or benefited from the collective effort of development

in an OSS community. Not all members of a company team were involved in the project to the

same degree of time and the amount of code contribution. Our subjects were a point of contact

between the software companies and the projects. They were more active in the OSS community

than other team members and worked on the front line for their team in the community. For

instance, P10 mentioned different engagement with OSS by team members: “It’s normally just

two, or three. ... There will be one actually from the team working closely with me, and then

some of the other guys, it’s just whenever we have some questions we just randomly discuss and

occasionally seeking for their help.”

The work of company teams includes contributing code changes for a software

component and providing inputs for contributions from other community developers. The

software components that company teams were involved within an open source project were

used to develop and enhance commercial products of their company (e.g., P1, P8, P10, P13, and

P16). For instance, P16 described the degree to which their team relied on open source software

to develop their products: “Honestly, I hardly use any proprietary technology. We heavily rely

on open sources. Starting from the lowest level, we use Linux kernel Digital Ocean, Xen

hypervisor, a programming language is Ruby on Rail and open source commercial web server,

this means that even though it is an open source, we pay them to unlock some features. And the

application layer, we use Ruby Gem, Angular JS, and jQuery plugins.”

Company teams had internal meetings to determine what to do for their product. The

internal meetings included having discussions on components to add, scheduling, and reviewing

code before submitting to the OSS codebase. Thus, contributions by the company teams were

Running Head: Coordination in Open Source Software 2.0

 17

aligned with the software company’s technical interests and resources, such as time and human

resources (P1, P10, P18). P10 explained the internal coordination with team members outside the

OSS community: “Our main goal is not to make contributions, but we make contributions

during our process or progress. We definitely have some discussions with team members because

you need to let them know we need to purchase some time on contributing and what we will

contribute. So, basically, the discussions happen all the time.”

Contributors or committers who were a member of a company team played role as a

contact point between the company team and the open source community. Subjects like P9 were

hired to develop a software solution for their organization and collaborated with other developers

in an open source community who are in the development of similar solutions for their own

organizations. In this case, team meetings involved a developer who contributed to and

communicated with an open source community and other team members whose work was less

related to developing technical components of the software. In some cases, company teams

employed the Agile methodology for their product development by having multiple scrum teams

whose members worked closely in OSS communities (P1, P9, P13, and P10). P13 described his

team and meetings: “There's a scrum team where I am part of it. It's around eight people in a

team, so usually, we go into the meeting in an actual meeting room, or we just do it online.” As

P16 emphasized, team meetings played an essential role to reach common grounds among the

team members, including both technical developers participating in OSS and non-technical

members outside OSS, by ensuring that “every team member should understand the project from

the lowest to the top layer because it is impossible to efficiently work on one layer without

knowledge in other layers.”

Software Companies

Running Head: Coordination in Open Source Software 2.0

 18

Software companies were relatively less visible but still appeared to play significant roles

behind the scene. Software companies have been viewed as sponsors of OSS projects [35], but in

our study, subjects described them as exercising more agency than simply being sponsors in the

background. So, we treated them as an entity that possessed their own collective characteristics

and intentions. For instance, teams and software companies perceived ownership of a particular

module of an OSS project in case the module was critical to their product. An experienced

contributor/committer P1 provided an illustrative example: “Often times different subsystems are

owned by different parts of whoever is the ... like in the case of [Product A], that’s owned by

[Company A], they have employees who work on it full time and they have their own division of

work.” P8 explained how software companies engaged with open source communities: “My

objective is to ensure that we basically—you know all of our effort in the open-source community

is aligned to our business needs, we continue to do things that are important to us and we

basically also you know engage with some open source community members directly if

something [is] required.”

Duality of Developer Identity: Negotiating Interests as Interessement

All but four of our subjects were members of a team affiliated with a software company.

Subjects from company teams were deployed to an OSS project by their employer, who was thus

a stakeholder in the development community. The individual contributors had duality in identity,

such that they participated in the community as an individual, while they represented the

interests of their company team and the software company. P8 described: “I think you know you

are part of the open source community, you wear that open-source hat, but still you do represent

and are driven by your company interest somewhere.”

Thus, in determining what to do for the community, contributors were governed by two

Running Head: Coordination in Open Source Software 2.0

 19

different sets of concerns: organizational decisions and individual interests. P3 reflected the time

when he was working for a company: “I was told what to do, and it was until I left and actually

worked for the foundation, then I had the freedom that I have to figure out like, “Okay, like what

next?” Decisions regarding code changes and feature implementations were made in meetings

within the company team. An individual contributor was a point of contact for each team. They

conveyed the team’s and company’s needs for a feature to the community and implemented them

by working with other developers in the software company and the community. P16, as a team

leader, emphasized: “I am a decision maker, so basically I assign a task to each team member

based on his/her strengths. They will see their assigned tasks in issue trackers.”

For small changes, the company-affiliated contributors retained agency by bypassing

explicit communications within their team. Fixing bugs and typos are good examples of such

small contributions. P1 said: “That’s not the right work, but just looking for a sort of little minor,

tiny little improvements because I like the project, and I wanted to be engaged with it.” P6

explained the duality more specifically: “If I am doing some fun work for me, right. So that’s a

different story where I do some fun work. But mostly it’s not that case, mostly it’s driven by my

current needs in the organization and that open source stream that had a gap in that.”

In contrast to contributors, committers had more agency to choose what to do and thus

made changes to the project based on their greater agency. However, the greater agency of

committers was not fully independent but still influenced by their company. Specifically, while

contributors’ activities were dictated more by their employer’s needs with little space for their

personal interest, committers were able to exercise more autonomy while considering the

expectation of their company. P1 summarized this well: “[A]s I become more central to the

[project], I’m a committer now and I’m on the project management committee, I feel like I am

Running Head: Coordination in Open Source Software 2.0

 20

one of those much more central people. I tend to just ask myself what do I feel like working on?

What is interesting to me and what would be helpful to my employer obviously as well. That’s in

my mind as well, which is one of the reasons they’re happy to pay me to do this.”

As such, individuals had multiple memberships in and outside their employer. They had

roles acquired based on the amount of code contribution and tenure in the community. The

membership of company teams resulted in the duality when exercising their agency as an

individual participant of a community. The agency was performed by deciding what to do and

how to implement the decision. Such decisions were made through a developer’s motivation to

contribute to the codebase, but company teams behind the developers influenced the decisions by

enforcing technical demands and needs for developing commercial products.

Interessement includes any action by an actor to stabilize their identity and to consolidate

a system of alliances with other actors. Hence, interessement of an actor is always competitive

and relative to other actors in a network. The duality of identity resides between two different

associations with developers from company teams: their company team vs. the open source

community. From ANT perspective, the duality of identity results in an effort of establishing a

system of alliances by developers from company teams to negotiate their interests with other

actors, such as their team, the company, and other participants in the community. For

contributors and committers from company teams, the effort is on-going and hard to settle during

their tenure in a community due to various reasons, such as changing positions in the community

(e.g., a contributor becoming a committer), losing or gaining interests in certain parts of code, or

the company’s strategic decisions for the product.

We interpret the identity duality as a way of maintaining a balance of power throughout

the process of interessement. Although the developers from company teams seemed to struggle

Running Head: Coordination in Open Source Software 2.0

 21

wearing two hats at the same time, they manifested agency as mediators who conveyed

influences from their company to an open source community. What was discussed during

internal meetings was not always transferred to the community because they had to re-negotiate

the interests and demands of other actors in the rest of the community, which included other

developers from competitor companies, individual contributors, project visions, and norms

within the community. ANT, in this sense, helps us to see the roles of company teams and

developers from the teams in constructing a system of alliances to establish an actor-network.

Attraction, Guidance, and Enrollment of Code and Software Development Tools

Code

Code was found to play significant roles in coordination in OSS communities. On the one

hand, code was the primary artifact as an outcome of the collective effort in an OSS community.

On the other hand, the code acted through its affordance of delivering meaningful signals for

coordination, i.e., supporting stigmergic coordination [4]. Stigmergic coordination relies on the

shared work outcome to assign labor to workers involved in collaboration without the need for

explicit coordination. Code, from this perspective, helps individual developers determine tasks to

perform (e.g., which bug to fix or what component is needed) based on their understanding of the

source code that has been collaboratively structured in a project community.

Code helped developers who just joined the community get onboard and maintained their

participation in an OSS community. Code changes signified what needed to be done and implied

the layers of contribution by the community members. By embedding bugs and errors, code was

the immediate source for contributors to find an area to work on. We discovered that starting a

contribution from reading the codebase was particularly helpful for low-hanging fruits like small

bugs and typos identified directly from the code, to be corrected (P2, P3, and P9). P1 identified

Running Head: Coordination in Open Source Software 2.0

 22

himself as a “code janitor,” which “hooked me into the project and got me going.” Along with

source code control systems, code was an indispensable actor containing histories of the past

work and awareness of what was being done. P1 added how code was useful to understand a

project: “It’s a very useful product and I think it's very interesting what they're doing with

software. … Let me go take a look. And the first thing I took a look at was, of course, the

codebase because that's what a software project in many ways actually is.”

Furthermore, code filled a role in stimulating actions of developers by the way it was

written. This made the code a major actor in the OSS communities and one of the first places

where developers went for coordination. For instance, P9 mentioned the self-sufficiency of the

code and its usefulness for next actions: “[T]he code itself is not well-documented anywhere

except in the code. You do have to get in there and trace through the code to figure out what’s

going on. If there’s something you need to change, you have to trace through the code to figure

out how to change it.” P4 also mentioned his habit of reading code to gain knowledge on the

current status of a project: “So every day I subscribe to the development list, and then I'll look at

code on some regular basis. I'll just click, and look at the patch file, it's just very useful to again

understand what's going on.”

Second, structures and norms to write code varied by OSS community, and the code

enforced contributors to follow the community protocol (P4, P5, and P11). P11 defined: “Good

code is well commented, it is modularized, so just by looking at the functions, function names,

it’s written beautifully in a way that’s well indented, the variable names are nice, the use of

underscores and capital letters, everything is good.”

Interestingly, the norm to write good code was acted differently between committers and

contributors. This seemed related to the power that committers possessed over contributors, such

Running Head: Coordination in Open Source Software 2.0

 23

as prioritizing, filtering, selecting issues to solve, and approving code changes to merge.

Although committers were expected to write better code for projects, contributors believed that

committers were free from the good code requirements due to the greater power. P4 said: “As a

committer, I can write some shit and commit it. Which is where I think a lot of the crap code

comes from. Contributor code is a small set of the overall codebase because committers write

more code than contributors, but I bet it’s the better code on average.”

Third, the flexible nature of the code enabled the collaboration among the developers

through loosely structured coordination. In OSS communities, code was a public, collaborative

artifact, which was viewed as an organism that grew and evolved over time by embracing

mistakes, errors, corrections, and practices from different people with unique interests and skills.

P9 mentioned the “code malleability” as an inherent nature of code in open source communities,

which was constructed and continuously shaped by the members of a community: “Somebody

else has to look at your stuff. It's not just your project. It's everybody's project. If somebody's

changing something you wrote, of course, you may have opinions about it, if other people have

stronger opinions, oftentimes you just yield.” P16 summarized the malleable nature of code: “All

software has a number of bugs even the commercial ones. But one of the benefits of using OSS is

that we can look at the source code to see the cause of a problem and be able to fix it. So, I think

it is not about how complete the software is, but the important thing is the accessibility to the

source code.”

Software Development Tools

Subjects reported on many software development tools that shaped OSS development.

First, Jira provides various collaborative development functionalities, including issue tracking,

bug tracking, and project management features. Jira was the most popular tool in our data: larger

Running Head: Coordination in Open Source Software 2.0

 24

and mature projects like Apache Spark and Hadoop relied more on Jira to manage issues.

Issue tracker was the core functionality in Jira, where contributors suggested issues (i.e.,

bug fixes and new features) to the community. P3 emphasized the importance of the issue tracker

as a starting point of a contribution that provided awareness of other developers’ activities: “I

think that’s always the best place to start. It is like, look[ing] at what other people have found

and see[ing] if there is anything that interests you that you think fits with your skill level or your

level of comfortability with the software, and [you] go from there.” However, despite the heavy

use of the issue tracker in Jira, subjects also expressed that the overwhelming volume of issues

stacked up and was not adequately controlled by the limited number committers (e.g., P3, P4, P6,

P8, P15), which resulted in uneven distribution of committer attention to the issues.

Next, GitHub was gaining presence in projects in our data. As P11 mentioned, GitHub

was right at the core of collaboration in open source communities: “I mean there's no other way

to collaborate. I feel GitHub is probably the best, easiest way, like you start a project and then,

you can work on it together, see how changes are made.” Smaller and younger projects were

adopting GitHub for its advanced git (i.e., a source code version control system) management.

GitHub provided pull requests, through which a contributor submitted a code change for a

review (P2, P7, P10, P11, P14, P17, and P19).

Pull requests were found to be central in the use of GitHub. They provided notification of

changes. They were the primary channel between committers and contributors to discuss the

submitted changes with other developers. Pull requests allowed developers to comment in line,

tag a person, and easily visualize differences in code. P6 described the use of pull requests:

“[Committers] do comment on pull request and yeah, it’s [a] good way to like, really tell the

submitter I don’t like this code or correct this way and resubmit it or maybe this part of code you

Running Head: Coordination in Open Source Software 2.0

 25

need to create a separate pull request. [T]hat kind of discussions happens on pull requests.”

Pull requests in GitHub appeared to help developers handle discontinuity and support

stigmergic coordination. Developers rely on pull requests when someone has to pick up where

the work has been left incomplete by the previous developer who is “only able to work for the

first half of the week (because) that’s all that their institution committed them for. (P1)” In this

case, pull requests help developers overcome discontinuity by conveying the context. P1

mentioned: “Keep it in context with work that you've done, so that people can, for example,

people can pick it up and work on it if you're not gonna work on it. Or so they can review it. Or

so they can understand how to encrypt user documentation for it for any number of reasons.”

As we navigate the interests and actions of the actors, code was found to attract

developers and inform them of what has been done and what needs to be done, which we call

enrollment. Code and software development tools enroll developers to the network by providing

a problem to work on, information on the history and the structure of the project, and norms and

rules of behaviors to write good code and pull requests. In order for developers to be enrolled to

the network, they must read the source code, find a problem, come up with an idea to contribute,

and request permission from the community to add their work to the codebase. In other words,

for developers, negotiating with code and software development tools envelops negotiating with

other actors, such as a contributor writing pull requests based on a shared template, a committer

determining the code quality and utility, and company teams attempting to influence the project.

Furthermore, we realized that “who has access to code” or “the degree to which an

individual can influence the source code” mattered among the actors. For instance, contributors

and committers had different levels of rights to apply modifications to the codebase, and thus,

company teams made an effort to make their member a committer in an OSS project.

Running Head: Coordination in Open Source Software 2.0

 26

Contributors and committers were battling and negotiating with each other using pull requests to

determine what changes should be accepted or rejected. In ANT terms, this means that code and

software development tools were the devices of interessement, in that the interrelated roles of

actors and their interests were defined by the amount of influence they presented on code and

software tools (i.e., whether they can actually change the source code). In this way, code and

software development tools possessed more agency to include or exclude a certain actor to the

network and created competing networks between the whole OSS community and company

teams. P4 described a situation where enrollment of an actor required enrollment through code

changes: “One of my colleagues wrote a fix for the FL parameter to make it more robust, and it's

still not been committed despite having had a couple of conversations.”

Coordination in Open Source Software 2.0: An ANT View

The actors identified above constituted an actor-network for coordination in OSS

communities (Figure 1). The actor-network illustrates relationships among the human actors,

which are mediated by code and software development tools. Company teams themselves were

the actors, but at the same time, as punctualized packages, they held its own assemblage

embracing individual developers and team members who were outside an OSS community. In

the actor-network, company teams and software companies established impermeable boundaries

based on corporate affiliations or software components (the solid lines in the figure), whereas

OSS communities were intended to be open with “low barriers of entry (P4)” from outside (the

dashed line). Overall, the actor-networks in the OSS communities were found to be collections of

heterogeneous actors who exchanged influences to attain mutual interests through coordination.

===Figure 1 here===

The alignments were not always successful and engendered competitions between the

Running Head: Coordination in Open Source Software 2.0

 27

actors whose interests were obscured to other actors in OSS 2.0. Company teams put forth their

interests, tried to optimize their product, and prioritized the features requested by customers.

Thus, company teams often became possessive of their code and even prevented others’ work

from being used widely in a community. P2 explained: “Usually people from those companies

start coming and pressuring to get the work done. That’s what usually breaks ties I would say, in

my experience, on the bigger contentious things if they just don’t choose to fork off and make

their own component. They were essentially doing everything they could to prevent us from

performing well on their clusters.” As a result, coordination in OSS 2.0 was an enrollment

process where there was as much effort of keeping others out as bringing actors into the network.

Such broken alignments engendered disjoints in coordination in OSS 2.0. Company

teams created competing networks within the whole actor-network that left individual

contributors and committers out of the network. P13 lamented: “It is more common to have

internal meetings with people who are working for the same company. It gets harder for people

outside the team to follow what is going on for the project and what they are trying to do. There

is like a big void you can’t never see. No discussion, it’s like something is done all of a sudden

like Ta-da.” P15 explained the disjoints as a failure of sharing social awareness in coordination

between company teams: “Most people would prefer to work with the team or person that they

can easily communicate like physically co-located or someone they know. This is one of the

disadvantages of open source development, how can you know when a person is going to finish,

or will he ever finish it. So, working on the same module, it’s more likely to be a group of people

who are physically working together.”

DISCUSSION

ANT was useful to illuminate the coordination across individuals, company teams, and

Running Head: Coordination in Open Source Software 2.0

 28

software companies in OSS 2.0. Because ANT does not limit our observations to predefined

groups and their roles (e.g., only developers), it allows us the flexibility of describing emerging

actors and their relationships [33]. Our findings were discovered mainly through paying attention

to relational aspects (e.g., how they work together, how code changes behaviors), rather than

actions of each actor (e.g., how they use software development tools). Table 3 presents

definitions of key concepts of ANT and how they were applied to this study.

Human actors include contributors, committers, company teams, and software

companies. The concept of punctualization allows us to understand how company teams can be

thought of as individual actors. The punctualized network comprised individual developers hired

by a company to work on open source components and their team members who are not visible

in the open source community. Further, company teams, as mediators, would be an anchor of

different actor-networks that competed to enroll code changes, leading to conflicts in

coordinating work among them. On the other hand, software development tools and code were

identified as non-human actors. They embed actions and competing interests of the human

actors. Our data also highlighted that code displayed agency of attracting, informing, and

stimulating developers, as part of enrollment. Code was seen as a communal and malleable

object that manifests the low degree of irreversibility.

===Table 3 here===

Implications for Theory and Research

Companies as New Actors in OSS 2.0

We described the roles of software companies, which were relatively unseen in the

network [2,36]. Previous literature primarily viewed that OSS projects were driven by a

collective effort of independent individuals [24,31]. The presence of companies was viewed as a

Running Head: Coordination in Open Source Software 2.0

 29

type of patronage or sponsor in OSS [35,37]. Companies were mostly providing resources, such

as human resources, supporting related conferences, and expanding the user base of the product

[24]. Moreover, concerns of individual developers from company teams have been paid little

attention in previous research. In this study, we showed how company teams influenced

coordination in OSS 2.0 by altering the actions and interests of their members and other

independent developers.

Putting the company teams and software companies in the network can provide new

insights for understanding the recent trends in OSS. Software companies contributed to the

projects by deploying individual developers to an OSS community from a work team, and they

leveraged the collaboration between their employees and the community. The individuals from

company teams have been working as a conduit to provide their resources to the community and

getting a community of help for their product. However, our data implied that different interests

of companies did not have a transparent forum for a communal resolution of a problem and that

there was a lack of translucency among company teams. These disagreements sometimes seemed

to hinder coordination among company teams and made it difficult to work together.

By considering software companies as actors, our understanding of other roles in OSS

can change. For instance, it may become harder for purely voluntary individuals to become a

committer. Indeed, the enforcement of norms about code quality—potentially in conflict with the

norm of keeping “the barrier to entry on the open sourcing low” and welcoming more

contributors (P4)—could be viewed as a way to enhance company control. This suggests that we

may have to reconsider the agency of individual participants in OSS development, in conjunction

with the growing agency of corporate stakeholders. Specifically, individual developers can still

voluntarily exert effort and decide what to do, but at the same time they should negotiate their

Running Head: Coordination in Open Source Software 2.0

 30

interests with those of company teams.

Moreover, putting software companies in the network informs our understanding of the

governance and control of OSS in the future. Most OSS communities, especially in Apache

Foundation, adopt “the consensus-based, community-driven governance” (a.k.a., The Apache

Way). However, several OSS communities begin to demonstrate characteristics of company-

driven governance. For instance, given that committers possess more agency and power to

determine what issues to solve and what changes to merge, software companies would want their

employees to become committers [39]. We found that committer positions were deemed as a

scarce but powerful resource for company teams because the position could render an

opportunity for a company to steer the OSS project. This suggests that the increasing presence of

company teams means their greater responsibility in coordination with other actors and the

greater power in the authoritative structure in OSS projects [17,40]. Thus, this study not only

echoes the notion of OSS 2.0 by Fitzgerald [24] but also puts more emphasis on the agency of

companies in OSS governance and control.

The duality of identity contributes to our understanding of what drives individual

developers from company teams to maintain their participation, by showing their attempts to

achieve a stable identity as a contributor or a committer. The duality of identity was primarily

created and reinforced by companies governing individual developers’ agency and autonomy in

the form of employment. Existing theories regarding OSS collaboration has mostly treated

individual developers as those who have clear motivations to participate, which can be either

intrinsic or extrinsic [42,45]. However, our findings can open an interesting avenue to consider

the competing interests of one individual contributing to multiple groups. Construction of a

stable identity has been found to sustain the participation of individual developers [20]. Future

Running Head: Coordination in Open Source Software 2.0

 31

research should explore which identity triumphs in a specific circumstance of open source

projects. One approach for this question is to examine the duality of identity and developer

behaviors based on a typology of OSS projects. For instance, Schaarschmidt and colleagues [39]

categorized commercializing approaches of OSS projects into four types based on initiating party

(firm vs. community) and the number of the participating firm. Although it appears that the

duality of identity is observed across OSS projects in varying sizes in our data, a typological

approach can help provide a more nuanced understanding of the phenomenon.

Besides, from an organizational perspective, an essential empirical concern is whether the

companies as new actors actually enhance the quality of open collaboration and the longevity of

the project [11]. Companies may bring more resources and workforces as an investment to an

OSS project. This is, in part, the reason why the increasing presence of companies in open

sources scenes are often positive [2,26]. However, a similar trend is viewed worrisome in other

domains that rely on open collaboration. Companies and even resourceful individuals not only

provide financial support but also make attempts to edit Wikipedia entries to their advantage

[27]. Our findings based on ANT can extend to similar domains benefitting from corporate

support, such as Wikipedia and citizen science, to better understand the roles and interests of

various actors around the community boundaries and their influences on the project quality.

Redefining Roles of Code in OSS 2.0

Analyzing OSS projects through the lens of ANT prompted us to attribute more agency to

non-human actors. Code turned out to be the centerpiece of the coordination among the human

actors in OSS development. The codebase was a useful conduit to deliver signals regarding what

to do, what has been done, and who is responsible. These signals had an active role in changing

behaviors of individual developers, company teams, software companies, and eventually, the

Running Head: Coordination in Open Source Software 2.0

 32

direction of the project development throughout the community. The codebase contained rich

information about an OSS community. We found that communities have their own rules and

norms in writing code and submitting changes. Writing good code and commit messages were

implicitly defined within a community and enforced to individual contributors. Code also

manifested the tension between company teams who prioritized their interests.

Also, software development tools like pull requests and issue trackers were supporting

the agency of code by easing the effort of writing, reading, and making sense of the codebase.

The technical affordance of the software development tools, including notifications and

commenting in line, provided social awareness and contextual continuity to developers working

in different time zones and locations.

Theoretically, ANT offers a new angle to view code in software development.

Previously, software has been viewed as a frozen material that hides an organization’s values and

actions [7]. This view toward code has been adopted to studies on sociotechnical systems, such

that code materializes properties of irreversibility in actor-networks [46]. However, we showed

that the codebase, as a flexible, collective organism, is at the core mechanism of coordination in

OSS projects. The findings suggest that we may need to treat code as a shared material that

possesses low degrees of immutability and instead embeds multiple alternative ways of

constructing the software and the history of changes over time.

Our findings on the flexible and informative nature of code can inform stigmergic

coordination in OSS projects. As observed in social insects, such as ants and honey bees,

constructing a collaborative outcome (e.g., building a colony or a nest) without explicit

coordination, stigmergic coordination utilizes a shared material itself as a coordination

mechanism without additional articulation work [4,14]. In the context of OSS collaboration, the

Running Head: Coordination in Open Source Software 2.0

 33

codebase contains information regarding what has been changed, what is done already, what is in

progress, and what needs to be done. Therefore, the code can inscribe the traces of dependencies

among open source participants. Previous works on open source software (e.g., [16]) mainly

focused on the technical affordance of collaboration tools and treated the code as a work

outcome. We provided evidence that code contributed to stigmergic coordination by

externalizing and conveying the history and the knowledge on the system and other actors’

behaviors. Future research should examine the role of code and other shared work outcomes in

similar settings and explore boundary conditions that enable stigmergic coordination.

In addition, understanding how different actors react and behave related to code should

be an interesting theoretical concern. Previous studies on OSS demonstrated that the success of

open source collaboration depends on trust among developers, which comes from transparent

process beliefs and a shared vision on the project [43]. Our data showed that committers and

contributors had different attitudes and practices in writing and interpreting code. The

committers were reported to have more freedom to choose which part of the code to work on,

whereas contributors were required to write better code that should also easily make sense (e.g.,

P4). If the differences in coding practices engender tensions among contributors and committers

and between company teams, the shared codebase and supporting tools like pull requests can

mitigate the tensions by offering translucency of code changes (e.g., what is removed and added

along with who made the change) and thus promote trust among developers from different

background across the OSS community.

Implications for Open Source Software Development

This study provides practical implications for entities participating in open source

projects and companies interested in leveraging the open source development for their business.

Running Head: Coordination in Open Source Software 2.0

 34

Although the corporate involvement in open source scenes has been observed for a while, the

type of engagement and how organizations utilize open source communities have recently been

changing. One of the most common ways for companies to leverage an open source approach

was to release a software component to open source communities and invite developers to

engage and enhance the component [25]. OpenOffice software suite, for example, had been set

out to be open source by Sun Microsystems and improvements in the suites were reflected to

Sun’s proprietary office applicationsv [46,47]. Walmart adopted a similar model: OneOps, a

cloud management tool, was open sourced in hopes to bring open source developers into the

enhancement of the software [22].

However, we observed that companies went beyond attracting individual developers and

deployed their employees to open source communities. The company involvement becomes

prevalent in projects besides ones mentioned in this study, including MySQL and RStudio. Most

contributions for MySQL are by people from companies, and they become a significant force to

move the community forward. The influence of open sourcing has been impactful enough to

attract individual developers. Developers dive into open source projects to increase their

visibility within the open source repositories, which could potentially improve one’s reputation

and hence, enable enhanced career opportunities.

The increasing company involvement poses a critical dilemma for the future of open

source software: open licenses vs. open collaboration. There has been a long belief that software

applications with open licenses are made possible by open collaboration of benevolent, voluntary

individuals [20,30]. Thus, the open collaboration of developers is well aligned not only with the

ideology (e.g., “open source way”) but also with how the software product evolves and

improves. In our study, the Actor-Network of open source communities revealed impermeability

Running Head: Coordination in Open Source Software 2.0

 35

between the open source boundaries and company team boundaries, through which code changes

and intentions were not openly shared. The findings point to the fact that open source projects

with the dominant company involvement may be deprived of the benefits of open collaboration

in the long run, such as consistent evolution, community support, and no vendor lock-in.

As a result, companies and IT administrators will face a new challenge to align their

strategies and business interests with other companies in an OSS project. The alignment with

other companies can be as important as those with the whole project community when the

project is actively driven by company teams. In this case, team members who interact with open

source communities can be a passage to such alignments. As a way to increase the software’s use

and usefulness, companies may wish to foster effective correspondence with other company

teams as well as the community as a whole.

Also, it will be imperative for companies and project administrators to mitigate the

negative ramifications of the duality in their developer’s identity. For instance, companies can

devise a way to evaluate a company team’s performance by the extent to which the team is

responsive to address issues related to the whole open source project as well as a particular

component only for the company. Given that the company team’s engagement with a community

can determine the quality of the company’s product, it is crucial for companies to effectively

manage the competing interests of the company teams, which are split between the whole OSS

community and the company product. In situations where a company is trying to ensure adoption

and usage of their software, it is possible that being a bridge to the external community can be a

key enabler of the software’s use and usefulness. We believe that, in this way, company-

affiliated developers can harness the duality of identity by being genuinely motivated to

contribute to the project following their own curiosity as an individual developer and, at the same

Running Head: Coordination in Open Source Software 2.0

 36

time, by being properly incentivized by their employer.

Code was viewed with agency and capable of delivering various signals for coordination.

Thus, tools for writing and submitting code should provide more nuanced social awareness.

There were certain norms and rules to write good code to be reviewed by committers. The

software development tools can embed a community-approved template including such

information as the writer, the logic behind, and their affiliation.

Finally, software development tools should support modularity in the codebase. Our

findings suggest that companies work on different components of the source code, but the

boundaries among the components were not clearly negotiated nor defined. Software

development tools can improve coordination among the company teams, for example, by

showing specific lines that are affected by new commits and providing enhanced searchability. In

those ways, work can be shared without version conflicts and avoid duplication of effort.

Limitations and Future Research

First, our data suffer from a limitation that our subjects may not represent the whole OSS

community. We admit that the actors’ roles and interests are dynamic, rather than persistent, and

so is the actor-network that consists of the actors. Thus, the last moment of translation should be

to acknowledge the possibility of betrayal of the actors who can change their interests at any

time and update the actor-network with mobilization of the actors beyond this study [8].

 By having subjects from a wide range of OSS projects, we obtained a broad

understanding of the trends of company involvement and coordination among them, which

seemed to happen across OSS communities in varying sizes. However, we were not able to

examine the evolution of actor-networks. It may require other types of data, such as a

longitudinal observation. Future studies can benefit from an in-depth case study with one OSS

Running Head: Coordination in Open Source Software 2.0

 37

community. The case study method has been applied to describe the process of an organizational

change that is enabled by information technology [38,46]. A systematic analysis of the source

code, accompanying the interpretative analysis of developer interactions, can unfold the process

of how an OSS product embeds the interactions among the actors over time.

Finally, we interviewed only developers whose contributions were made mainly by

constructing code. As we analyzed data, we realized that customers of an OSS product might

play significant roles as well. Subjects mentioned that directions of the software and changes in

future iterations could depend on inputs from outside the developer communities (e.g., P8, P13).

Future studies should expand the actor-network to the whole eco-system of OSS by including

actors who are less involved in the code construction.

CONCLUSION

We looked at the coordination in OSS communities through the lens of ANT. We

discovered several kinds of human and non-human actors. Software companies were identified

as a significant actor in the scene, which has been treated tangentially in OSS communities. We

also highlighted the active roles of software development tools and code as mediators, through

which norms and information on the work were delivered. Our results inform the understanding

of coordination in OSS 2.0 and suggest theoretical and practical implications for OSS.

i This movement is sometimes referred to as free/libre open source software (FLOSS) to acknowledge the
distinctive motives of the free software community.

ii “ApacheCon is the place to come learn what Apache projects are doing, as well as a place for projects to
come build stronger project communities, and forge bonds between projects (www.apachecon.com).”

iii https://www.apache.org/foundation
iv See https://en.wikipedia.org/ wiki/Committer. Contributors are also referred to as developers in some cases

(e.g., by the Apache Software Foundation), but we use the term developers as an inclusive term for
individuals who are involved in OSS projects, regardless of the level of contribution and rights.

v OpenOffice was discontinued by Sun in 2011 after the project was donated to the Apache Foundation and
became Apache OpenOffice. When the project was active, Sun Microsystems managed the project under
the Sun Industry Standards Source License (SISSL), a currently retired free and open source license
supported by the company. Sun Microsystems was acquired by Oracle Corporation in 2010.

Running Head: Coordination in Open Source Software 2.0

 38

REFERENCES

1. Aksulu, A. and Wade, M.R. A comprehensive review and synthesis of open source research.
Journal of the Association for Information Systems, 11, 11 (2010), 576–656.

2. Andersen-Gott, M., Ghinea, G., and Bygstad, B. Why do commercial companies contribute
to open source software? International Journal of Information Management, 32, 2 (2012),
106–117.

3. Atkinson, C.J. The “Soft Information Systems and Technologies Methodology”(SISTeM):
an actor network contingency approach to integrated development. European Journal of
Information Systems, 9, 2 (2000), 104–123.

4. Bolici, F., Howison, J., and Crowston, K. Stigmergic coordination in FLOSS development
teams: Integrating explicit and implicit mechanisms. Cognitive Systems Research, 38,
(2016), 14–22.

5. Bonaccorsi, A. and Rossi Lamastra, C. Altruistic individuals, selfish firms? The structure of
motivation in Open Source software. The Structure of Motivation in Open Source Software,
(2003).

6. Bonner, W. History and IS–Broadening our view and understanding: Actor–Network Theory
as a methodology. Journal of Information Technology, 28, 2 (2013), 111–123.

7. Bowker, G.C. and Star, S.L. Knowledge and information in international information
management: Problems of classification and coding. In L. Bud-Frierman, ed., Information
Acumen: The Understanding and Use of Knowledge in Modern Business. Routledge,
London, 1994, pp. 187–213.

8. Callon, M. Some Elements of a Sociology of Translation: Domestication of the Scallops and
the Fishermen of St Brieuc Bay. The Sociological Review, 32, 1_suppl (May 1984), 196–
233.

9. Callon, M. Techno-economic Networks and Irreversibility: The Sociological Review, (May
2014).

10. Callon, M. and Latour, B. Unscrewing the big Leviathan: how actors macro-structure reality
and how sociologists help them to do so. Advances in social theory and methodology:
Toward an integration of micro-and macro-sociologies, 1, (1981).

11. Capra, E., Francalanci, C., Merlo, F., and Rossi-Lamastra, C. Firms’ involvement in Open
Source projects: A trade-off between software structural quality and popularity. Journal of
Systems and Software, 84, 1 (January 2011), 144–161.

12. Charmaz, K. and Belgrave, L.L. Grounded theory. The Blackwell Encyclopedia of Sociology,
(2007).

13. Crowston, K. A coordination theory approach to organizational process design. Organization
Science, 8, 2 (1997), 157–175.

14. Crowston, K., Østerlund, C., Howison, J., and Bolici, F. Work Features to Support
Stigmergic Coordination in Distributed Teams. In Academy of Management Proceedings.
Academy of Management, 2017, pp. 14409.

15. Crowston, K., Wei, K., Howison, J., and Wiggins, A. Free/libre Open Source Software
development: What we know and what we do not know. ACM Computing Surveys, 44, 2
(2012), 7:1–7:35.

16. Dabbish, L., Stuart, C., Tsay, J., and Herbsleb, J. Social coding in GitHub: Transparency and
collaboration in an open software repository. In ACM Conference on Computer Supported
Cooperative Work (CSCW). ACM, 2012, pp. 1277–1286.

Running Head: Coordination in Open Source Software 2.0

 39

17. Di Tullio, D. and Staples, D.S. The governance and control of open source software projects.
Journal of Management Information Systems, 30, 3 (2013), 49–80.

18. Ducheneaut, N. Socialization in an open source software community: A socio-technical
analysis. Computer Supported Cooperative Work (CSCW), 14, 4 (2005), 323–368.

19. Espinosa, J.A., Slaughter, S.A., Kraut, R., and Herbsleb, J.D. Team knowledge and
coordination in geographically distributed software development. Journal of Management
Information Systems, 24, 1 (2007), 135–169.

20. Fang, Y. and Neufeld, D. Understanding sustained participation in open source software
projects. Journal of Management Information Systems, 25, 4 (2009), 9–50.

21. Feller, J., Finnegan, P., Fitzgerald, B., and Hayes, J. From Peer Production to Productization:
A Study of Socially Enabled Business Exchanges in Open Source Service Networks.
Information Systems Research, 19, 4 (December 2008), 475–493.

22. Finley, K. Walmart Doesn’t Want You to Get Locked Into Amazon’s Cloud. Wired, 2016.
https://www.wired.com/2016/01/walmart-doesnt-want-you-to-get-locked-into-amazons-
cloud/.

23. Finley, K. Why 2018 Was a Breakout Year for Open Source Deals. Wired, 2018.
https://www.wired.com/story/why-2018-breakout-year-open-source-deals/.

24. Fitzgerald, B. The transformation of open source software. MIS Quarterly, (2006), 587–598.
25. Fitzgerald, B., Kesan, J.P., Russo, B., Shaikh, M., and Succi, G. Adopting open source

software: A practical guide. MIT Press, 2011.
26. Germonprez, M., Kendall, J.E., Kendall, K.E., Mathiassen, L., Young, B., and Warner, B. A

theory of responsive design: A field study of corporate engagement with open source
communities. Information Systems Research, 28, 1 (2016), 64–83.

27. Hafner, K. Seeing corporate fingerprints in Wikipedia edits. The New York Times, 19,
(2007).

28. Heeks, R. and Stanforth, C. Understanding e-Government project trajectories from an actor-
network perspective. European Journal of Information Systems, 16, 2 (2007), 165–177.

29. Herbsleb, J.D. and Grinter, R.E. Splitting the organization and integrating the code:
Conway’s law revisited. In Proceedings of the 21st international conference on Software
engineering. ACM, 1999, pp. 85–95.

30. Hippel, E. von and Krogh, G. von. Open Source Software and the “Private-Collective”
Innovation Model: Issues for Organization Science. Organization Science, 14, 2 (2003),
209–223.

31. Howison, J. and Crowston, K. Collaboration through open superposition: A theory of the
open source way. MIS Quarterly, 38, 1 (2014), 29–50.

32. Latour, B. Science in action: How to follow scientists and engineers through society.
Harvard university press, 1987.

33. Latour, B. Reassembling the Social: An Introduction to Actor-Network-Theory. Oxford
University Press, 2005.

34. Law, J. Notes on the theory of the actor-network: Ordering, strategy, and heterogeneity.
Systems Practice, 5, 4 (August 1992), 379–393.

35. Lindman, J. and Hammouda, I. Support mechanisms provided by FLOSS foundations and
other entities. Journal of Internet Services and Applications, 9, (February 2018), 8.

36. Link, G.J. and Jeske, D. Understanding Organization and Open Source Community Relations
through the Attraction-Selection-Attrition Model. In Proceedings of the 13th International
Symposium on Open Collaboration. ACM, 2017, pp. 17.

Running Head: Coordination in Open Source Software 2.0

 40

37. Mäenpää, H., Fagerholm, F., Munezero, M., Kilamo, T., and Mikkonen, T.J. Entering an
ecosystem: The hybrid OSS landscape from a developer perspective. In CEUR Workshop
Proceedings. 2017.

38. Sarker, S., Sarker, S., and Sidorova, A. Understanding business process change failure: An
actor-network perspective. Journal of management information systems, 23, 1 (2006), 51–86.

39. Schaarschmidt, M., Walsh, G., and von Kortzfleisch, H.F.O. How do firms influence open
source software communities? A framework and empirical analysis of different governance
modes. Information and Organization, 25, 2 (April 2015), 99–114.

40. Shaikh, M. and Henfridsson, O. Governing open source software through coordination
processes. Information and Organization, 27, 2 (2017), 116–135.

41. Shaikh, M. and Vaast, E. Folding and unfolding: Balancing openness and transparency in
open source communities. Information Systems Research, 27, 4 (2016), 813–833.

42. Singh, P.V. and Tan, Y. Developer Heterogeneity and Formation of Communication
Networks in Open Source Software Projects. Journal of Management Information Systems,
27, 3 (December 2010), 179–210.

43. Stewart, K.J. and Gosain, S. The Impact of Ideology on Effectiveness in Open Source
Software Development Teams. MIS Quarterly, 30, 2 (2006), 291–314.

44. Temizkan, O. and Kumar, R.L. Exploitation and exploration networks in open source
software development: An artifact-level analysis. Journal of Management Information
Systems, 32, 1 (2015), 116–150.

45. Von Krogh, G., Haefliger, S., Spaeth, S., and Wallin, M.W. Carrots and rainbows:
Motivation and social practice in open source software development. MIS Quarterly, (2012),
649–676.

46. Walsham, G. and Sahay, S. GIS for District-Level Administration in India: Problems and
Opportunities. MIS Quarterly, 23, 1 (1999), 39–65.

47. OpenOffice.org. Wikipedia, 2019.
https://en.wikipedia.org/w/index.php?title=OpenOffice.org&oldid=892984881.

Running Head: Coordination in Open Source Software 2.0

 41

Number Medium Years
in OSS Involvement Projects Country Roles in

Projects

P1
Phone/Skype

(Phase 2)
15

years
Full-time
Employee

Apache (Jena, Stanbol, Clarezza,
Spark), Fedora Commons, and
Islandora CLAW

Canada
Contributor

and
committer

P2
Phone/Skype

(Phase 2)
3 years

Full-time
Employee

Apache Hadoop (HDFS
component)

USA Committer

P3
Phone/Skype

(Phase 2)
4 years

Full-time
Employee

Islandora and Fedora Canada
Contributor

and
committer

P4
Phone/Skype

(Phase 2)
12

years
Full-time
Employee

Apache projects and open source
Java code quality projects USA

Contributor
and

committer

P5
Phone/Skype

(Phase 2)
3 years

Full-time
Employee

Apache Spark, Lucene, and more
(unspecified)

South
Korea

Committer

P6
Phone/Skype

(Phase 2)
6 years

Full-time
Employee

Lucene, Luke, Solr, and multiple
other projects

USA Contributor

P7
Phone/Skype

(Phase 2)
5 years

Full-time
Employee

Pandas, Jupyter environment
kernels, and Pypandoc

Germany Contributor

P8
Phone/Skype

(Phase 2)
7 years

Full-time
Employee

Hadoop, HBase, ZooKeeper,
BookKeeper, and Hive

India Contributor

P9
Phone/Skype

(Phase 2)
12

years
Full-time
Employee

Open ONI, Drupal, and Samvera USA Committer

P10
Phone/Skype

(Phase 2)
1 year

Full-time
Employee

TensorFlow USA Contributor

P11
Phone/Skype

(Phase 2)
6 years

Voluntary as
Individual

Riot.js, Jupyter notebook
extensions, TensorFlow, and
small unspecified projects

USA Committer

P12
Phone/Skype

(Phase 2)
8 years

Full-time
Employee

Apache Spark, Terraform
Provider, Homebrew-Cask, and
many other

USA
Contributor

and
committer

P13
Phone/Skype

(Phase 2)
2 years

Full-time
Employee

vSphere USA Committer

P14
Face-to-Face

(Phase 1)
8 years

Full-time
Employee

Ruby Library and AngelList APIs USA Committer

P15
Face-to-Face

(Phase 1)
5 years

Full-time
Employee

jqGrid and jQuery USA Contributor

P16
Face-to-Face

(Phase 1)
5 years

Full-time
Employee

Linux kernel Digital Ocean, Xen
hypervisor, Ruby Gem, Angular
JS, and jQuery plugins

Thailand Committer

P17
Face-to-Face

(Phase 2)
1 year

Voluntary as
Individual

Several small open source
projects through GitHub, and
open data projects (not specified)

USA Contributor

P18
Face-to-Face

(Phase 1)
19

years
Full-time
Employee

Apache Directory and Apache
Mina

USA
PMC,

Committer

P19
Phone/Skype

(Phase 2)
3 years

Voluntary as
Individual

Multiple Open Source NLP tools
(not specified)

South
Korea

Contributor

P20
Face-to-Face

(Phase 2)
2

months
Voluntary as

Individual

Various meme generators, a
small, open source iOS theming
platform (not specified)

USA Contributor

Table 1 List of Study Subjects

Running Head: Coordination in Open Source Software 2.0

 42

Type Actor Definition in This Study Representative Quote

Human
Actors

Contributors

Individual developers who
contribute to an OSS
community in any form
including code,
documentation, tests, and
ideas in varying degrees

“I think my role was to code for the project. I
am the contributor, I would say. Whatever
ideas they give, I have taken inputs, and I
made sure it’s gonna be user-friendly to
them. I would say I’m a contributor.” (P20)

Committers

Individual developers who
have permissions to make
changes to the shared source
code of an open source
project

“I've been a committer, as in someone who
can actually change the source code and has
control over the source code.” (P4)

Company
Teams

A group of people in a
company who work together
on the same module of a
software product

“There's a scrum team where I am part of.
It's around eight people in a team, so usually,
we go into the meeting in an actual meeting
room, or we just do it online.” (P13)

Software
Companies

A for-profit entity that
utilizes the shared outcome
of an OSS community in
exchange of deploying their
resources to the community

“My objective is to ensure that we
basically—you know all of our effort in the
open-source community is aligned to our
business needs, we continue to do things that
are important to us and we basically also you
know engaging with some open source
community members directly if something
required.” (P8)

Non-
Human
Actors

Code

The primary artifact of a
software product as an
outcome of the collective
effort by members of an
open source community

“It’s a very useful product, and I think it's
very interesting what they're doing with
software. … Let me go take a look. And the
first thing I took a look at was, of course, the
codebase because that's what a software
project in many ways actually is.” (P1)

Software
Development

Tools

A piece of software that
members of an open source
community utilize to carry
out various actions such as
discussing and writing code

“I mean there's no other way to collaborate.
I feel GitHub is probably the best, easiest
way, like you start a project and then, you
can work on it together, see how changes are
made.” (P11)

Table 2 List of Actors Identified in Open Source Communities

Running Head: Coordination in Open Source Software 2.0

 43

Concept Definition Application to this Study

Actor
“Any thing that does modify a state of affairs
by making a difference” [33:71]

Contributors, committers, company teams,
software companies, code, and software
development tools

Intermediaries
Transfer meaning and information without
altering the actor’s behaviors, intentions, and
expectations [33]

Uninterested in this study

Mediators
“Transform, translate, distort, and modify the
meaning or the elements they are supposed to
carry” [33:39]

Developers from company teams and code
influencing the open source project

Translation

“the interpretation given by the fact or
technology builders of their own interests and
those of the actants they seek to enroll in
order to transform their claim to a matter of
fact” [32:180]

See the moments of translation below.

Problematization

“Determining a set of actors and defining
their identities in such a way as to establish
themselves an obligatory passage point in the
network of relationships they were building”
[8:204]

Providing interdefinitions of the actors and
their interests.

Obligatory
Passage Point

(OPP)

An event or situation that concerns all the
actors and their alliances, and where
relationships are formed around [8,38]

An open source software product that
operates effectively without errors and bugs

Interessement

“the group of actions by which an entity
attempts to impose and stabilize the other
actors it defines through its problematization”
[8:207]

The duality of identity of contributors and
committers from company teams is part of
ongoing efforts of negotiating their interests
with the actor-network.

Enrollment
As part of translation, a set of defined actors
accept, negotiate, and align their interests to
be included in the actor-network [8]

Code as an enrollment device as trying to
attract developers to work on problems and
providing information on the history of work
by an OSS community

Punctualization
Reducing a heterogeneous, complex network
into a smaller, simple package of actors by
identifying network patterns

Networks of individual developers hired by a
company and their team members were
punctualized into company teams to be
individual actors

Irreversibility
“The degree to which it is subsequently
impossible to go back to a point where
alternative possibilities exist” [38:56,46:42]

The source code is malleable and evolving
through a constant collaborative
(re)construction by various actors in the
actor-network.

Actor-Network
“Heterogeneous network of aligned interests,
including people, organizations and
standards” [38:56,46:42]

Actor-Network in OSS 2.0 in Figure 1

Note: The definitions in this table were adopted from various sources of theoretical discussions on ANT
[9,10,33,34,38,46].

Table 3 Key Concepts of ANT Used in This Study

Running Head: Coordination in Open Source Software 2.0

 44

Figure 1 Actor-Network in OSS 2.0

Contributor Contributor

Contributor

Company
Team

Company
Team

Company
Team

Committer

Company
Team

Open Source
Community

Tools

Code

Open
Source

Software

Team
Member

Team
Member

Team
Member

Software Company

Individual
Contributors

Individual
Committers

Open source communities have loose and penetrable
boundaries (dashed lines of the oval) open for both
individual voluntary developers and employees
representing their company and their teams who
benefit from open source components for their
commercial products.

Code, as a collaborative work outcome, provides
signals on what has been done, what is to do, and
what has changed. Code provides opportunities for
committers and contributors to exercise their power to
influence an open source project. Tools, like version
control systems, help code manifest the agency.

Company teams and software companies, as
punctualized groups, have impermeable boundaries
(solid lines). They communicate and collaboration with
an open source community through a team member
participating as a contributor or committer in the open
source community.

