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Hierarchy and Centralization in Free  
and Open Source software team communications 

 

Abstract 

 

Free/Libre Open Source Software (FLOSS) development teams provide an interesting 

and convenient setting for studying distributed work. We begin by answering perhaps the most 

basic question: what is the social structure of these teams? Based on a social network analysis of 

interactions represented in 62,110 bug reports from 122 large and active projects, we find that 

some OSS teams are highly centralized, but contrary to expectation, others are not. Projects are 

mostly quite hierarchical on four measures of hierarchy, consistent with past research but 

contrary to the popular image of these projects. Furthermore, we find that the level of 

centralization is negatively correlated with project size, suggesting that larger projects become 

more modular. The paper makes a further methodological contribution by identifying appropriate 

analysis approaches for interaction data. We conclude by sketching directions for future research.  
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Hierarchy and Centralization in Free  
and Open Source software team communications 

Free/Libré Open Source Software (FLOSS) is a broad term used to embrace software 

developed and released under an “open source” license allowing inspection, modification and 

redistribution of the software’s source without charge (“free as in beer”). Much though not all of 

this software is also “free software,” meaning that derivative works must be made available 

under the same unrestrictive license terms (“free as in speech”, thus “libré”)2. In this paper, we 

investigate the informal social structure of FLOSS development teams by examining the pattern 

of communications between developers. Specifically, we measure the centralization and 

hierarchy of the communication in a number of projects. We are interested in team structure 

because, as explained in detail below, the practitioner-advocate literature on FLOSS often claims 

that particular aspects of social structure reflect and facilitate the advantages of FLOSS 

production. FLOSS advocates often link claims about its success and effectiveness to the 

distinctive and superior organization of their projects and communities. From Raymond’s 

“Cathedral and Bazaar” (1998a) to Cox’s “town council” and “cliques” (1998) to Krishnamurty’s 

“Cave” (2002), organizational metaphors abound to characterize the organization of FLOSS 

projects.  

Yet the little that we know about the organization of FLOSS comes largely from personal 

anecdote and case studies; empirical treatments are strongly needed. We are particularly 

interested in centralization and hierarchy within the teams because the predictions of the 

literature on these dimensions are somewhat mixed. Some strengths of the FLOSS approach are 

said to stem from organizational features that imply low centralization and hierarchy, while other 

appears to imply the opposite. To resolve this apparent discrepancy, we present measures of the 

structures of informal organization of FLOSS development projects using data drawn from three 

major FLOSS repositories: Sourceforge, the Apache Foundation and GNU’s Savannah. These 

data answer the question: what is the typical structure, if any, of a FLOSS development team?  

While FLOSS is an important research area in its own right, FLOSS teams are of more 

general interest because they are surprisingly successful examples of distributed teams. 

Distributed teams have been successfully applied to manage some very complex, large, and non-
                                                
2  We have chosen to use the acronym FLOSS rather than the more common OSS to emphasize this dual meaning. 
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routine activities (Cutosksy et al., 1996; Moon & Sproull, 2000). They seem particularly 

attractive for software development, because software, as an information product, can be easily 

transferred via the same systems used to support the teams (Nejmeh, 1994; Scacchi, 1991). 

Unfortunately, the problems of software development (e.g., interdependency and development of 

shared understandings) are exacerbated when development teams work in a distributed 

environment (Armstrong & Cole, 2002; Carmel & Agarwal, 2001; Curtis et al., 1988; Grinter et 

al., 1999; Herbsleb & Grinter, 1999).  

While the literature on software development and distributed teams emphasize the 

difficulties of distributed software development, the case of FLOSS development presents an 

intriguing counter-example. Effective OSS development teams somehow profit from the 

advantages and evade the challenges of distributed software development (Alho & Sulonen, 

1998). The “miracle of OSS development” poses a real puzzle and a rich setting for researchers 

interested in the work practices of distributed teams.  

Social structure, centralization and hierarchy 

In this section, we briefly review the literature on FLOSS development that addresses the 

question of centralization and hierarchy. Centralization of a software project is usually thought of 

in terms of who writes the code (which we call development centralization). A highly centralized 

project by this definition is one in which a few of the members of the project team write most of 

the code, while a decentralized project would have a more equal division of labour.  

A hierarchical structure is one that is organized or classified according to rank or 

authority. The stereotypical hierarchy is an organization with tiers of employees from the bottom 

to the top, linked by reporting relationships. However, the concept can be applied to connections 

other than reporting. A project with sharp divisions between a few developers and others would 

be hierarchical in terms of code development, because the developers would form a tier that has 

more authority over the code than the others.  

While the above discussion has presented centralization and hierarchy in terms of the 

code, FLOSS projects depend on an open development process that people can easily join and 

contribute, collectively shaping the direction of the project. Accordingly, in this paper we focus 

our attention on the overall structure of communications in the project, rather than on 

programming in particular. Centralization of communications can be determined in a variety of 

ways, as discussed below, but the basic notion is that in a centralized structure a few individuals 
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take part in most of the communications, while a decentralized structure would have more equal 

levels of participation. Hierarchy also has several measures, but all involve the notion that the 

communications structure is organized in tiers, with individuals at one level communicating to 

those at the next level.  

Practitioner literature 

Much of the practitioner literature on FLOSS development emphasizes the importance of 

a decentralized and non-hierarchical pattern of communications. Eric Raymond praises the 

openness of FLOSS projects to suggestions and involvement from outside the initial developer or 

core team, “the process produces a self-correcting spontaneous order more elaborate and 

efficient than any amount of central planning could have achieved.” (Raymond, 1998a). 

Kuwabara (2000) characterises Raymond (1998a) as suggesting that the Linux model is 

“decentralized development” surrounded in “clamor ... anyone is welcome—the more people, the 

louder the clamor, the better it is”. Similarly, in interviews we have conducted, developers 

associated with the Apache Foundation express a belief that non-hierarchical and decentralized 

structures are preferred because they are more robust to personality disputes and the withdrawal 

of individuals at the centre or top of the hierarchy. This structure is placed in marked contrast to 

the top-down ‘cathedral’ of proprietary software engineering centered on the “architect.”  

Linus’ Law, introduced by Raymond (1998a), states a key purported strength of FLOSS 

development: “Given enough eyeballs, all bugs are shallow.” This law is often relied upon when 

arguing that FLOSS development leads to more secure and less buggy products. Raymond 

reports that Linus Torvalds, the founder of Linux, notes “the person who understands and fixes 

the problem is not necessarily or even usually the person who first characterizes it.” Instead, 

“Somebody finds the problem ... and somebody else understands it.” The effectiveness of Linus’ 

Law seems to rely on the absolute numbers of participants, developers, co-developers and active 

users in a project. Nonetheless it also appears to require that the communications structure of 

bug-fixing will include many participants, each expanding on reports, providing alternative 

conceptualizations of the problem or attempting solutions. Such a communications structure 

would tend to be decentralized and low in hierarchy, as anyone can communicate with anyone 

else. 
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Alan Cox describes an unintentional field experiment of these factors in his analysis of 

the Linux on 8086 project (Cox, 1998). In that project, the developers (including Cox himself) 

“walled themselves off” from other participants by using a ‘kill-file’ on their email. This 

technique allowed the central developers to not read all the messages on the mailing list—those 

from persons in the ‘kill-file’ go straight to the trash, unread and not responded to. The resulting 

communications structure would be quite hierarchical, as the core developers would form one 

tier, talking only to each other, while other participants would be in a different tier, talking to but 

not getting responses from developers. This ‘kill-file’ attitude was, Cox argues, an 

understandable but ultimately wrong response. In fact, Cox describes his experiences as “a guide 

to how to completely screw-up a free software development project”. Cox argues that no matter 

how important it is to reduce distractions from ‘town councilors,’ excluding them from 

discussions is too harmful to the practice of free software to be considered. Instead the project 

must stimulate and permit broad discussion (keeping discussions focused on code that exists 

rather than merely ideas) and not let cliques place themselves above ordinary participants in the 

projects. As Raymond (Raymond, 1998a) puts it, there is a norm for even the founders of 

projects to “speak softly”. In short, many of the leading FLOSS practitioners argue from their 

own experiences for the importance of a decentralized and non-hierarchical team structure.  

While the literature reviewed above suggests the importance of non-centralized and non-

hierarchial communications, the practitioner-advocate literature also praises social-structures that 

appear to be more hierarchical. For example Raymond (1998b) spends significant time 

discussing the concept of ‘ownership,’ which he identifies as an exclusive right to redistribute 

modified versions. He suggests that this right of ‘ownership’ is informal but strongly normative 

and often persists in the same individual that founded the project—a feature found, for example, 

in the Linux project. While Raymond clearly endorses “speaking softly”, strong ownership ought 

to lead to patterns of deferral and authority that would reveal themselves in hierarchical 

communication patterns, with the owners on top. These patterns might also emerge because 

some developers become more frequent contributors and thus gain reputation and status within 

the group.  
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Academic literature 

The academic literature examining FLOSS development is rapidly growing and has 

begun to investigate the social structure of projects. Researchers have studied both size and 

action patterns, concentrating on code production, but few have addressed interaction between 

project members. Primary among the currently published FLOSS research have been a number 

of case studies (Cox, 1998; Gacek & Arief, 2004; Mockus et al., 2000, 2002; Moon & Sproull, 

2000). That there have been only a limited number of many-project studies reflects the early 

stage of this research on this subject, the complexity of the phenomenon and the difficulty in 

obtaining comparable data across projects.  

Krishnamurthy (2002), one of the limited number of many-project studies, challenged the 

belief that FLOSS projects are typically team-based at all. While his study was limited to the top 

100 projects on SourceForge, he found a surprising number of one developer projects and a very 

strong skew to small developer teams, which was confirmed in our preliminary data. It is 

possible that this skew reflects the large number of still-born or ‘code-dumped’ projects that are 

hosted on SourceForge. Since one person contributes all of the code, one developer projects are 

centralized and hierarchical in development. However, it is an open question as to whether they 

are also centralized in their overall communications structure when including communications 

from users. (Of course, it is also an open question as to whether scholarship on FLOSS practices 

should take a great interest in single person projects or read a great deal about the effectiveness 

of FLOSS practices into their performance.)  

Together the academic case studies of FLOSS projects {e.g., \Cox, 1998 #2399; Gacek, 

2004 #2692; Moon, 2000 #2411; Mockus, 2000 #2720; Mockus, 2002 #2719} suggest a 

hypothesized model of FLOSS development with a hierarchical structure. The focus of these 

studies has largely been on the contribution of code. For example, Mockus et al. (2002) studied 

the Apache httpd project and found rapidly decreasing centralization from new code 

contribution, to bug-fixes to bug reporting. They found that development was quite centralized 

with only about 15 developers contributing more than 80 percent of the code for new 

functionality. Bug-reporting, on the other hand, was quite decentralized, with the top 15 reporters 

submitting only 5 percent of problem reports in the Apache project. They summarize this finding 

by hypothesizing that, “In successful open source developments, a group larger by an order of 
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magnitude than the core will repair defects, and a yet larger group (by another order of 

magnitude) will report problems.” (p. 329).  

This hierarchical or onion-like structure is shown in Figure Error! Reference source not 

found.. At the center of the onion are the core developers, who contribute most of the code and 

oversee the design and evolution of the project. In the next ring out are the co-developers who 

submit patches (e.g. bug fixes), which are reviewed and checked in by core developers. Further 

out are the active users who do not contribute code but provide use-cases and bug-reports as well 

as testing new releases. Further out still, and with a virtually unknowable boundary, are the 

passive users of the software who do not contribute to the project’s lists or forums. 

Insert Figure 1 about here. 

While these studies suggest that only a few developers are heavily involved in code 

production, they only briefly touch on the question of communications structure. Moon and 

Sproull (2000), in their case study of the development of Linux, describe the highly skewed 

distribution of traffic on the Linux mailing lists but their analysis is limited to counting postings 

and they do not examine interactions. That is, they describe who is talking, but not who is talking 

to whom. Similarly Mockus et al. (2002) describe patterns in initial bug-reports but do not 

examine patterns of communication which follow up these reports and which show the FLOSS 

development process in action.  

However, there is reason to believe that the model in Figure 1 extends as well to 

communications. In discussions with developers, we have identified the development of a buffer 

of active users as a desirable FLOSS community feature for communications reasons. Active 

users create a rich support and their collected answers form a knowledge base that others can 

draw on to answer questions. The availability of willing and able user-to-user support is an often 

cited benefit of using FLOSS and is said to be of higher quality than commercial support. This 

clearly describes a hierarchical structure with the developers in the centre, active users forming a 

“middle management” layer, and the users seeking support at the periphery.  

As well, much of the research on motivations of FLOSS developers points to the 

importance of status and prestige (Ghosh, 2002; Hertel et al., n.d.; Ye & Kishida, 2003). This is 

the foundation of the purported gift economy {Bergquist, 2001 #2757} that has entranced 

economists looking at FLOSS, as well as something participants themselves point to. If FLOSS 
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is an activity which leads to the emergence of status and prestige we would expect 

communications to reflect this hierarchy (Krackhart, 1993). We therefore decided to test for the 

emergence of hierarchy in order to empirically test the hypothesis that FLOSS is a status forming 

activity. 

It is these interactions that are the focus of our study. In summary then, the literature, 

while no means all in agreement, leans towards a prediction of hierarchy in FLOSS project 

communication structure.  

Methods and data 

To explore the structure of FLOSS teams empirically, we employed social network 

analysis (SNA). The first step in the analysis was to collect interaction data for a sample of 

projects. The analysis reported in this paper is of interactions related to the bug fixing process for 

FLOSS projects. We chose to study bug fixing because it provides a “microcosm of coordination 

problems” (Crowston, 1997) and is a collaborative task in which, as Raymond (1998a) 

paraphrases Linus Torvalds, the people finding the bugs are different from those that understand 

the bug and those that fix the bug. Thus the collaboration of bug fixing produces rich interactive 

collaborations and it is a process that involves the entire community, the core and co-developers 

as well as active users, and thus provides evidence regarding the social structure of the entire 

membership of the development teams. Furthermore, the use of bug tracking systems provide a 

convenient sample of bug-related discussions and one in which interactions could be defined. 

Finally, as described above, bug fixing is the site of some claims of effectiveness made for 

FLOSS projects.  

Data source 

To study the network of interactions around bug fixing, we collected interaction data 

from bug tracking systems. In addition to tracking the status of bugs, these systems enable users 

to report, and developers to discuss bugs. As shown in Figure 2, a bug report includes basic 

information about the bug that can be followed up with additional messages seeking or providing 

additional information about the bug. We analyzed these follow up messages for evidence about 

the social structure of the teams. We collected data from three bug tracking systems: the 

SourceForge tracker, the Apache Foundation Bugzilla and the Savannah bug tracker. The 
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diversity of projects is a strength of our study, since most analyses are restricted to a single 

system.  

Insert Figure 2 about here. 

The first sample of projects was drawn from projects hosted by SourceForge 

(http://www.sourceforge.net/), a free3 Web-based system that provides a range of tools to 

facilitate OSS development. At the time of our data collection, SourceForge supported more than 

50,000 OSS projects on a wide diversity of topics4. Clearly not all of these projects were suitable 

for our study: many are inactive, previous studies have suggested that many are in fact individual 

projects (Krishnamurthy, 2002), and some do not make bug reports available. Therefore, we 

restricted our sample to projects that listed more than 7 developers and had more than 100 bugs 

in the bug tracking system at the time of selection in April 2002. We identified only 140 projects 

that met these criteria (and were able to obtain data for 122, as discussed below). Our second 

sample was drawn from the GNU Savannah system (http://savannah.gnu.org), which support 

2,208 projects, 281 of which are part of the GNU project. The bug tracking system lists 372 

projects, but only 22 of these had more than 100 bugs, so these 22 were used for the analysis. 

Our third and final sample was drawn from the 56 projects using the Apache Software 

Foundation Bugzilla bug tracking system. Thirty-two (32) of these projects had more than 100 

bugs in the system and were used.  

Unfortunately, space does not permit a full listing of the projects, but Table 1 lists 

examples to give a sense of the samples. Those familiar with OSS may recognize some of these 

projects, which span a wide range of topics and programming languages.  

Insert Table 1 about here. 

Coding 

Two key issues in the application of SNA are the definition of an actor and of an 

interaction. In the bug tracker systems, contributions to the system (bug reports and follow up 

messages) are identified by a unique user ID, which we used to identify actors. It is possible (and 

                                                
3  At least free ‘as in beer’: ironically, the SourceForge system itself is now proprietary. Savannah was developed 

from the last free ‘as in freedom’ version of SourceForge. 
4  As of 12 December 2004, SourceForge claims 92,181 projects. 
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there is no way of knowing) that a single individual could utilize multiple IDs or that multiple 

individuals could share one. However, we believe it is unlikely that many do either due to the 

logistics of maintaining multiple accounts and the lack of incentive to do so. Indeed, because 

reputation accrues to an ID, we believe that most individuals will choose to maintain a single ID.  

The definition of an interaction was more involved. For this analysis, we counted each 

follow up message in the bug tracking system as one interaction from the sender of the message 

to the preceding sender (or to the original bug reporter). Bug reports that had no follow up 

messages provided no interaction data. It appeared from reading a sample of bug reports that 

follow up messages were sometimes directed at previous messages and sometimes to the original 

poster. Unfortunately, the true destination is difficult to determine mechanically. We chose to 

code interactions as responses to the previous sender to spread out the interactions rather than 

focusing them on the bug poster. The arrows in Figure 2 show how two interactions were coded 

for this fragment of a bug report and messages. Note that messages are displayed in reverse 

chronological order in the system, so the response to the original report is actually the bottom 

message (not shown), the top message responds to the next, etc.  

The interaction data from the bug reports form a network or graph, and were represented 

as a sociomatrix (Wasserman & Frost, 1994, p. 80), one matrix per project. A sociomatrix has a 

row and a column for each individual, and the cells of the matrix count the number of 

interactions from one individual to another. If the interactions are directional, the resulting 

sociomatrices are asymmetric; if individuals can interact with themselves, the diagonals of the 

matrix are meaningful. Both conditions applied to our data.  

To collect data from SourceForge, we developed programs to download and parse the 

bug report pages for the selected projects. Pages were spidered from SourceForge in April 2003. 

Unfortunately, between selection of projects and data collection, some projects restricted access 

to bug reports, so we were able to collect data for only 122 projects. Interactions for the Apache 

and Savannah projects were extracted directly from the databases, which were obtained for 

research purposes from the foundations that run them. The databases were provided in November 

2004. The data we processed to obtain the sociomatrices are summarized in Table 2. 

Insert Table 2 about here. 
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Processing of the SourceForge data revealed a problem with missing data. Specifically, 

when a message is posted by a non-logged-in user, the sender is listed as “nobody”. These 

messages constituted an average of 15% of the messages (as low as 0% and as high as 50% for a 

few projects). We considered several alternative strategies for handling this missing data. We 

rejected the simplest solution of counting all nobody messages as being from the same sender 

(“nobody”) because the large number of such messages would have seriously biased our results. 

Simply dropping the “nobody” interactions from the sociomatrix by deleting the “nobody” row 

and column had the disadvantage of underestimating the number of participants in the discussion 

and leaving some participants disconnected from the discussion. In the end, we decided to recode 

the “nobodies” as a unique individual in each bug report (e.g., using “nobody686314” as the 

sender of all “nobody” messages in bug report number 686314). This approach retains 

interactions between individuals but at the cost of introducing of fictitious characters. The effect 

on the count of developers is not clear: it may increase the estimate because the same anonymous 

person might post in multiple bug reports, but be counted separately; or it may decrease the 

count because multiple anonymous users posting in a single bug report are counted as one.  

Analysis 

Once we had the sociomatrices, we examined the projects’ structures. Following an 

exploratory data analysis philosophy, we first plotted the interaction graphs for a selection of 

projects to visualize the interactions and get a sense of the data. Figure 3 shows the interaction 

plot for a typical project, openrpg, created in the program Netminer and hand edited to reduce 

the number of labels. Note that in an interaction plot, the important information is the pattern of 

connections between nodes rather than their precise locations (that is, the X-Y dimensions of the 

graph are not interpretable). The distance between nodes is an approximation of the strength of 

the ties, e.g., using Kamada and Kawai’s (1989) spring embedding algorithm. The plot in Figure 

3 suggests that the interactions in this project are centered on a few individuals, and that the 

peripheral individuals have typically only posted a bug report (indicated by having only an arrow 

coming in), consistent with the hypothesized structure.  

Insert Figure 3 about here. 

To numerically test the hypothesis that projects have centralized and hierarchical 

structures, we calculated the network centralization and four measures of hierarchical structure 
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(Krackhart, 1993). All five measures range from 0 to 1. Centralization has been long studied in 

the field of Social Network Analysis and has several accepted definitions {Wasserman, 1994 

#2981}. For centralization, 0 means a perfectly decentralized network (e.g., a ring or totally 

connected graph) while 1 means perfectly centralized network (a star). Hierarchy is a less 

commonly studied concept. The intuitive meaning of the term is clear, but it is more difficult to 

reduce to a single number. Instead, Krackhart suggests four different measures of a network’s 

structure: connectedness, hierarchy, efficiency and lubness. These are defined to be 1 for a true 

hierarchy, and 0 for a non-hierarchy. The details of each measure is given below. The 

calculations we report were computed using Jeff Reminga’s NetStatPlus library 

(http://www.casos.cs.cmu.edu/projects/netstat/). 

Network centralization 

The calculation of network centralization starts by determining the centrality of each 

individual in the network. There are many different definitions of centrality in the literature 

(Wasserman & Frost, 1994, Ch. 5), and the choice between measures is based on the substantive 

nature of the interactions. We decided to use the most basic definition, which is based on degree: 

individuals who receive or send more connections are more central than those that do not. This 

choice was based on the interpretation that an individual who posts messages in reply to more 

bug reports is more central to the bug fixing process than one who posts fewer. Alternative 

definitions of centrality, such as those based on betweenness, proximity or closeness, seemed not 

to fit the data we had collected. The usual calculation of degree centrality is based on 

dichotomous data (i.e., communication vs. no communication). We dichotomized the 

sociomatrices with 1 message as the cut-point, so individuals’ centralities were simply the count 

of the individuals with whom they interacted (possibly including themselves). The degree 

counted can be the in-degree (number of interactions received), out-degree (number sent) or sum 

of the two (sometimes called the Freeman centrality). It is typical to attribute centrality to an 

individual who receives a lot of messages (in-degree centrality), but we chose to compute out-

degree centrality because of our interest in identifying individuals who contribute to a broad 

range of bug reports.  

Once we had calculated the individual centrality measures, we could calculate the 

centralization of the entire network. The standard definition of network centralization is based on 

the inequality of the individual centrality measures: in a very centralized network, one individual 
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will have a high centrality and the others low, while in a decentralized network, no single 

individual will stand out, i.e., all the centralities will be about the same, high or low (Wasserman 

& Frost, 1994, p. 176). Specifically, the network centralization is calculated as the sum of the 

differences between the maximum and each individual’s centrality score, normalized to range 

from 0 to 1 by dividing by the theoretical maximum centralization. The theoretical maximum is 

the centralization that would be obtained in a perfectly centralized star network where the only 

interactions are a central individual talking to everyone else. Figure 4 presents three box plots 

showing the distribution of centralization scores for projects from the three data sources. Note 

the wide range of scores for this measure, indicating that projects vary greatly in how centralized 

they are.  

Insert Figure 4 about here. 

Connectedness 

The remaining four measures measure different aspects of a network’s structure, 

comparing specific properties of a given network to the properties that would hold for an ideal 

hierarchy (one organized into tiers with relations between the tiers). The first measure is 

connectedness. In an ideal hierarchy, every member of the organization is connected to someone 

else in the organization, and so the connectedness score is defined as 1 for a connected graph 

(one in which every node can reach every other node in the underlying undirected graph.) A fully 

unconnected graph has no edges at all, and so gets a connectedness score of 0. Connectedness 

seems to be useful in ways similar to centrality, as it reveals if there is one team or whether some 

members are not connected, possibly working on their own or in a smaller subgroup. Figure 5 

shows the distribution of connectedness scores for projects.  

Insert Figure 5 about here. 

Graph Hierarchy 

The second measure is graph hierarchy. Krackhardt (1993) notes that in an ideal 

hierarchical organization, relationships are asymmetrical. There are no loops in which, for 

example, one person’s subordinate is also that person’s boss’s boss. Graph hierarchy is defined 

to range from 0 in a network in which all relationships are symmetrical to 1 in which they are all 

asymmetrical. Krackhardt (1993) suggests that this measure can be seen as operationalizing, “the 
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degree to which the organization is dominated by status in its informal relations.” This 

interpretation can be applied to our interaction data, as it would indicate that individuals who 

report bugs rarely respond to the comments of other, presumably more central developers who 

comment on the bugs. The distribution of hierarchy scores for projects is shown in Figure 6.  

Insert Figure 6 about here. 

Efficiency 

The third measure is efficiency. In an ideal hierarchy, every individual has a single rather 

than multiple superiors, so a graph is considered graph efficient if there are not multiple paths 

between nodes. Krackhardt (1993) suggests that this measure will have a “curvilinear 

relationship to organizational effectiveness”. In a perfectly efficient network, the loss of a single 

link will leave the network disconnected, meaning that the network is brittle and performance 

will be reduced for very high levels of efficiency. On the other hand, density in relationships 

(and thus lower efficiency) might be good for robustness of the organization but, as the 

efficiency reduces, the increased overhead of maintaining all these linkages would reduce 

performance. Efficiency is closely related to the density of the network; as density increases, 

efficiency decreases. In our data, a dense network would be formed if many individuals 

responded to messages from many others, rather than just a few. Figure 7 shows the distribution 

of efficiency scores for projects.  

Insert Figure 7 about here. 

Least Upper Boundness 

The final measure is “lubness”. In an ideal hierarchy, all pairs of individuals have a 

common superior somewhere higher up the hierarchy. Lubness (short for least upper 

boundedness), measures the extent to which pairs of individuals in the network communicate 

directly or indirectly with a common individual. It is defined to be 1 for a perfect hierarchy in 

which all pairs have a common superior and 0 where none do. Krackhart (1993) suggests that 

lubness is associated with ease of resolving “organizational conflict” because the higher lubness, 

the more there will be a person ultimately in charge and able to resolve the conflict. For our 

communications networks, lubness indicates the degree to which the network has a single centre: 
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an individual who (eventually) answers everyone’s question. Figure 8 shows the distribution of 

lubness scores for the projects.  

Insert Figure 8 about here. 

Interactions 

To explore the potential of the centralization and hierarchy measures for understanding 

the structure of project groups, we calculated the correlation between the scores and other 

measures of interest. Specifically, we calculated Pearson correlations coefficients among the 

scores and with the number of developers who contributed messages to the bug report tracking 

system, which we used as a measure of the overall project size. The count of developers was 

heavily skewed, so it was log transformed for analysis. This transformation is justified 

theoretically, since the size of the project is the result of some kind of growth process. The 

correlation coefficients are shown in Table 3.  

Insert Table 3 about here. 

Discussion 

Our simple data analysis revealed several surprising findings. First, to our surprise, our 

data indicate that OSS projects are not uniformly centralized nor hierarchical, contrary to 

expectations. In fact, the calculated centralization measures display a considerable range, as 

shown in Figure 3. In short then, our data demonstrate that the centralization of OSS projects is 

in fact distributed, with a few highly centralized projects, a few decentralized and most 

somewhere in the middle (indeed, the mean centralization is 0.54).  

Second, most projects have high connectedness scores, indicating that contributors are 

mostly linked into the communications structure. The lower scores for some SourceForge 

projects indicates that some contributors are not interacting with the rest of the group, perhaps 

because the bugs they have reported have not yet been addressed by core developers. 

Connectedness may be an interesting measure for further analysis. Calculating connectedness 

after raising the threshold for dichotomizing the interaction matrix (an analysis we did not 

perform) would reveal how the network breaks into clusters with high levels of communications 

and thus measure modularity in communication structure. 
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Third, the hierarchy scores for projects show some distribution, with a mean of 0.80. The 

relatively high level suggests that most participants in the discussions do not reciprocate 

messages. This pattern would hold if most bug reports are content to simply report the bug and 

not take part in the follow up discussions. This is an interesting finding because it contradicts the 

descriptions in the practitioner literature of FLOSS teams as “surrounded in ‘clamor’”. The high 

efficiency and lubness scores further the impression of essentially one-way communications in 

most projects. The high efficiency scores also suggest that many participants are only weakly 

connected to the organization.  

Fourth, project centralization scores are strongly negatively correlated with number of 

participants in the bug report discussions. The plot of this relationship, shown in Figure 9, 

suggests that small projects can be centralized or decentralized, but larger projects are 

decentralized. We interpret this finding as a reflection of the fact that in a large project, it is 

simply not possible for a single individual to be involved in fixing every bug. As projects grow, 

they have to become more modular, with different people responsible for different modules. In 

other words, a large project is in fact an aggregate of smaller projects, resulting in what might be 

described as a “shallot-shaped” structure, with layers around multiple centres. Figure 10 shows 

the interaction graph for a highly centralized project, curl; Figure 11, the graph for a larger 

decentralized project, squirrelmail. 

Insert Figures 9, 10 & 11 about here. 

Finally, there is a high negative correlation between project size and density. In fact, the 

relationship is an inverse one, as shown in Figure 12. Graph density is the ratio of the actual links 

to the possible links in a completely connected graph, which increases as the square of the 

number of participants. The relationship shown in Figure 12 suggests that the number of 

connections a participant can maintain remains roughly constant as the project grows, making the 

network increasingly less dense.  

Insert Figure 12 about here. 

Conclusion 

Many authors have speculated on the structure of FLOSS teams. In this paper, we present 

data that demonstrates that at least for discussions around bug fixing, project teams social 
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structures are largely hierarchical consistent with the academic literature we reviewed. On the 

other hand, the projects display a surprising range of centralizations, with some teams being 

highly centralized and others decentralized. However, there is a tendency for large projects to be 

less centralized.  

Our study has the strength that it uses data from three sources, rather than just one. 

However, it does suffer from a limitation in that all of the projects selected are basically 

successful in that they have attracted developers and generated activity in the form of bug reports 

and discussion (Crowston et al., 2003). A future study should compare the structure of these 

successful projects to other less successful projects to assess how the structure affects the 

performance of the teams. As well, it would be instructive to compare the communications 

patterns we have observed in FLOSS teams to those of proprietary software development teams.  

As well, the study examined only interactions around bug fixing in the bug tracking 

system. From conversation with developers, we have learned that projects differ greatly in how 

they use these tools; some do not use them at all, and some that do use them do not use them for 

discussions, preferring email instead. A future study should incorporate data about interactions 

from multiple sources.  

Of course organizational hierarchies are not static, but rather develop and evolve over 

time. A limitation of our analysis is that we collapsed all interactions across time into a single 

measure. A future study might analyze the interactions over time to provide a more dynamic 

picture of the evolution of communications networks. Since all of the messages in the bug 

trackers are time stamped, it is possible to do so. This type of analysis might reveal whether 

decentralized projects have multiple centres at the same time or whether one individuals acts at 

the centre for a while, and is then replaced by another person, giving the appearance of multiple 

centres for the network when analyzed as a whole.  

Finally, our analysis has examined the structure of project communication networks but 

not their content. A next step for studies of FLOSS will be to examine what the individuals are 

actually saying and how these conversations support productive software development practices. 

Even so, information from these sorts of analyses will be helpful in identifying where in the 

process each participant is situated and in identifying differently shaped projects.  
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Figures and Tables 

 

Figure 1. A synthesized FLOSS development team structure. 
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Figure 2: Example SourceForge bug report and follow up messages showing coding of 
interactions (http://sourceforge.net/tracker/index.php?func=detail 

&aid=686314&group_id=235&atid=100235 

Table 1. Examples of projects included in sample.  

Project name Source Short description 
curl SourceForge Command line tool and library for client-side URL transfers. 
gaim SourceForge A GTK2-based instant messaging client. 
netatalk SourceForge A kernel-level implementation of the AppleTalk Protocol Suite. 
phpmyadmin SourceForge Handles the basic administration of MySQL over the WWW 
squirrelmail SourceForge A PHP4 Web-based email reader. 
tcl SourceForge Tool Command Language  
GNU arch Savannah A revision control system 
Make Savannah Compilation control system 
DotGNU Savannah Portable .NET 
httpd-1.3 Apache Webserver 
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Table 2. Statistical summary of raw data processed to extract interaction data.  
 SourceForge Savannah  Apache Bugzilla 

Number of projects 122 22 32 

Bugs    
Total number  62,110 7,040 30,312 
Average /project 509 320 947 
Median /project 279 215 615 

Interactions    
Total number  10,675 84,101 
Average/bug  1.5 2.8 

Participants    
Total number 14,922 1,348 16,579 
Average /project  65 606 
Number in multiple projects 1,280 52 2,204 

 

 

 

 
Figure 3. Plot of interactions for the openrpg project bug report data, created in Netminer.  
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Figure 4. Distribution of out-degree centralization scores for projects.  

 

 

 

Figure 5. Distribution of connectedness scores for projects. 
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Figure 6. Distribution of graph hierarchy scores for projects.  

 

 

 
Figure 7. Distribution of efficiency scores for projects.  
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Figure 8. Distribution of lubness scores for projects.  

 
 

Table 3. Correlation coefficients among network measures.  
 log N Deg Den Con Hie Eff Lub 
log.N. 1.00 -0.40 -0.71 0.06 0.10 0.51 0.03 
Degree -0.40 1.00 0.15 0.29 0.09 -0.03 0.18 
Density -0.71 0.15 1.00 0.11 -0.44 -0.92 0.01 
Connectedness 0.06 0.29 0.11 1.00 -0.25 -0.11 0.29 
Hierarchy 0.10 0.09 -0.44 -0.25 1.00 0.53 -0.19 
Efficiency 0.51 -0.03 -0.92 -0.11 0.53 1.00 -0.02 
Lubness 0.03 0.18 0.01 0.29 -0.19 -0.02 1.00 
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Figure 9. Centralization versus project size (r=-0.52).  

 

 

 
Figure 10. Plot of interactions for curl, a highly centralized project (centralization = 0.922).  
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Figure 11. Plot of interactions for squirrelmail, a decentralized project  

(centralization = 0.377).  

 

 

 
Figure 12. Density decreases as the inverse of network size.  

 


