
 1

Participation in Community-Based Free/Libre Open Source Software Development Tasks:

The Impact of Task Characteristics

Kangning Wei, U. Yeliz Eseryel and Kevin Crowston

Shandong University, East Carolina University and Syracuse University

Abstract

Purpose – This paper explores how task characteristics in terms of trigger type and task topic

influence individual participation in community-based Free/Libre Open Source Software (FLOSS)

development by considering participation in individual tasks rather than entire projects.

Design/methodology/approach – A quantitative study was designed using choose tasks that were

carried out via the email discourse on the developers’ email fora in five FLOSS projects. Choice

process episodes were selected as the unit of analysis and were coded for the task trigger and topic.

The impact of these factors on participation (i.e., the numbers of participants and messages) was

assessed by regression.

Findings – The results reveal differences in participation related to different task triggers and task

topics. Further, the results suggest the mediating role of the number of participants in the

relationships between task characteristics and the number of messages. We also speculate that

project type serves as a boundary condition restricting the impacts of task characteristics on the

number of participants and propose this relationship for future research.

Research limitations/implications – Empirical support was provided to the important effects of

different task characteristics on individual participation behaviors in FLOSS development tasks.

Practical implications – The findings can help FLOSS participants understand participation

patterns in different tasks and choose the types of tasks to attend to.

 2

Originality/value – This research explores the impact of task characteristics on participation in

FLOSS development at the task level, while prior research on participation in FLOSS development

has focused mainly on factors at the individual and/or project levels.

Keywords: Free/Libre Open Source Software (FLOSS); task characteristics; participation

 3

1. Introduction

Community-based Free/Libre Open Source Software development (referred to simply as FLOSS

throughout this paper) has attracted great interest among researchers who seek to understand this

novel model of openness, often with an interest in transferring the model to other settings (e.g.,

Economides and Katsamakas, 2006; Oh and Jeon, 2007). Developer and user voluntary

participation and involvement is essential for the success of FLOSS development (Xu et al., 2009;

Ehls and Herstatt, 2015), and has been studied extensively in FLOSS research (e.g., Zhang et al.,

2013; Xu and Jones, 2010; Bagozzi and Dholakia, 2006; Barcellini et al., 2014).

Extant research has focused on identifying individual or project-level factors influencing

individuals’ voluntary participation in FLOSS development projects as a whole. Factors examined

include intrinsic and extrinsic motivations for getting involved (Roberts et al., 2006; Hertel et al.,

2003; Lakhani and von Hippel, 2003), cognitive and affective trust (Xu and Jones, 2010), initial

access level of developers (Fang and Neufeld, 2009), ideology (Bagozzi and Dholakia, 2006),

software licensing (Stewart et al., 2006; Santos et al., 2013; Belenzon and Schankerman, 2015),

and leadership effectiveness (Xu et al., 2009). Beyond initial participation, a few studies have

examined sustained participation and found that social interactions among members and the

benefits obtained from social interactions are the main drivers of this kind of participation (Zhang

et al., 2013; Fang and Neufeld, 2009), and that both the core and the peripheral members of FLOSS

teams use a variety of politeness strategies that create respect and intimacy to maintain their social

interaction (Wei et al., 2017). Taken together, this body of literature has contributed to the

understanding of individual participation in FLOSS development by focusing on the important

characteristics of participants and of projects.

 4

However, given the volunteer nature of FLOSS projects, just deciding to participate or not in

a project has little impact: what matters is what work or tasks volunteers choose to participate in

and what they actually do for the project. FLOSS development is task-oriented and task

characteristics are major configuration factors in FLOSS development (Howison and Crowston,

2014), suggesting the importance of adopting a task perspective for FLOSS research.

Task has long been a key consideration in group research more generally. Zigurs and Buckland

(1998) defines a group task as “the behavior requirements for accomplishing stated goals, via some

process, using given information” (p.316). This definition emphasizes the importance of task

characteristics presented to the group, i.e., the specific attributes or dimensions that describe

different tasks (Griffin et al., 1981). Prior non-FLOSS organizational research has established that

task characteristics such as task type, task complexity and urgency have great impacts on

individual and group behaviors (Campbell, 1988; Luciano et al., 2018).

Despite the practical and theoretical importance of tasks, the details of how developers choose

tasks have received only limited attention in FLOSS research (Ehls and Herstatt, 2015). For

example, in a longitudinal study of the Jazz project, Licorish and MacDonell (2017) found that

software practitioners engaged most intensively (i.e., exchanged more messages) in enhancement

tasks, followed by defect-fixing tasks and support tasks, which demonstrated that software

practitioners’ engagement depended on the nature of the work they were performing. Similarly,

Howison and Crowston (2014) argued that decisions to participate or not in a particular FLOSS

development task will be influenced by the specific characteristics of the tasks in addition to

individual or project-level factors. Research has found that newcomers in FLOSS development are

not confident about choosing their initial tasks because they do not have enough information about

 5

the tasks (Steinmacher et al., 2015). While indicative of the value of studying tasks, these studies

are just a start.

The objective of this paper is to increase our understanding of participation in FLOSS

development at the level of particular tasks. We specifically ask the following research question:

how do different task characteristics affect individuals’ participation in completing FLOSS

development tasks? To answer this question, we focus on community-based FLOSS development

and examine participation in tasks from a process perspective as explained in Section 2. Our results

lead us to a re-evaluation of the functioning of FLOSS development teams, one that shed light on

the nature of expertise in the projects that provides insights for future research on participation in

FLOSS development.

2. Theoretical Background

We start by developing a framework for understanding tasks and their characteristics, drawing on

research in small groups, deferring the development of specific hypotheses to the following

section.

2.1 Task Characteristics and Participation Behavior

A range of possibly relevant task characteristics has been identified and substantial studies have

demonstrated that individuals’ behaviors vary according to these task characteristics (Venkatesh

et al., 2016). For example, Deng and Joshi (2016) found that in the context of crowdsourcing work

environment, crowdsourcing task characteristics (e.g., job autonomy, task variety, task

significance, etc.) shape individuals’ continued participation. Speier et al. (2003) investigated the

moderating role of task complexity on the relationships between interruptions and computer-

supported task performance and found that interruptions facilitate performance on simpler tasks

while inhibiting performance on more complex tasks.

 6

Our research is an assessment of the relationships between selected task characteristics and

individuals’ participation behavior in FLOSS development tasks. We start with one task

characteristic that has been studied extensively in group research, namely task type (e.g., Fang et

al., 2005-6; Licorish and MacDonell, 2017). Numerous classifications of task types have been

proposed to describe differences in the tasks performed by teams (Stewart and Barrick, 2000).

Most of the major classifications were developed between the 1950s and 1980s (Zigurs and

Buckland (1998) offer a brief summary of these classifications).

2.2 McGrath (1984)’s Task Type Framework

Among classifications of task types, McGrath’s (1984) task circumplex framework is one of the

most cited. This framework argues that group tasks can be classified into four categories: generate,

choose, negotiate and execute. These categories differ along two dimensions. The first dimension

reflects the degree to which the tasks have cognitive versus behavioral performance requirements.

For instance, choose tasks are cognitive since correct or preferred answers need to be selected (a

cognitive task) and agreed upon, while execute tasks are behavioral since they need physical

movement, coordination or dexterity (Straus, 1999). The second dimension indicates the degree to

which the task is cooperative or conflictual. For instance, negotiate tasks are conflictual as they

resolve differing interests or viewpoints while generate tasks can be cooperative (Straus, 1999).

As a well-established taxonomy of group tasks, McGrath’s framework captures basic

characteristics of task processes and has been widely used as a conceptual foundation to study

different tasks types in both traditional organizational settings (e.g., Nouri et al., 2013) and

technology-mediated communication settings (e.g., Zigurs and Buckland, 1998; Barlow and

Dennis, 2016). However, in the limited research that considers the different types of software

development tasks when investigating individuals’ or team behaviors, most of them classify task

 7

types not on a theoretical framework. Rather, task types were identified based on what concrete

work the developers or users do, such as bug-fixing tasks (Crowston, 2008), information-providing

tasks (e.g., Lakhani and von Hippel, 2003), and defect, enhancement and support tasks (e.g.,

Licorish and MacDonell, 2017). To better understand participation behavior, researchers have

called for in-depth examination of the nature and structure of software tasks by applying theoretical

task frameworks in software development research (Licorish and MacDonell, 2017).

For this paper, we opted to study tasks from the “choose” quadrant of the McGrath’s task

circumplex (1984) as exemplars of the range of tasks involved in software development (i.e., we

hold task type constant). Choose tasks require coordination effort from the team members in order

to decide a correct answer (e.g., intellective tasks) or to seek consensus on a preferred answer (e.g.,

judgement tasks) (Straus, 1999). We selected choose tasks as the research focus for three reasons.

First, we argue that among the four task categories in McGrath (1984)’s task circumplex,

choose tasks will be particularly common in FLOSS development. Software development tasks in

general have been seen as conceptual in nature (Zmud, 1980; de Reuver et al., 2018), i.e., on the

cognitive side of McGrath’s (1984) task circumplex framework.

Second, choose tasks are well suited for our study. It requires considerable participation and

coordination in order to achieve agreement on a choice. Further, the tasks are not all the same.

People may spend different amount of time along the cognitive-behavioral continuum for different

tasks in a same category (Stewart and Barrick, 2000), which means that we should see variation in

the effort devoted to finish the tasks.

Finally, from a practical perspective, choose tasks are easy to identify from a process view of

tasks. Prior research in decision making has provided several ways to identify the steps in choice

 8

processes (Poole and Roth, 1989; e.g., Mintzberg et al., 1976), which enable us to identify these

tasks in a consistent way.

2.3 Task Characteristics for FLOSS Choose Tasks

Dennis et al. (2008) argues that task “is best thought of in terms of the fundamental communication

processes that must be performed” (p. 579). From this perspective, finishing a task requires

participants not only to share information, but also to conduct a cognitive process collectively to

assess and act on the information. Different kinds of tasks involve different cognitive requirements,

which is consistent with McGrath’s cognitive-behavioral dimension of the task circumplex. In this

research, we build on this process view of tasks to analyze choose tasks in FLOSS development.

We focus on the following two specific characteristics of tasks, trigger type and task topic, which

each classify tasks into two categories.

2.3.1 Trigger type

In a voluntary and self-managing environment such as the FLOSS development, choose tasks are

usually not prescribed. Instead, they emerge from the interaction among participants. That is, tasks

start with some stimulus that evokes them (Mintzberg, 1973; Smart and Vertinsky, 1977), which

we label as a task trigger. A trigger is an event that prompts activities to happen at a particular

time (Dix et al., 2004). Different triggers can be expected to provoke different task processes.

Triggers that evoke a choose task can be classified into three types along a continuum of the

degree of pressure to make a choice: opportunity and crisis triggers form the two ends of the

continuum, with problem triggers in between (Mintzberg et al., 1976). Opportunity triggers are

ideas that are considered on a voluntary basis to improve an already secure situation (Mintzberg

et al., 1976). At the other extreme, crisis triggers have high time pressure and resource demands

that require immediate attention (Nutt, 1984; Mintzberg et al., 1976). Problem-triggered tasks face

 9

milder pressure than crises and can have multiple stimuli (Mintzberg et al., 1976). Usually,

problems require actions in a timelier manner than opportunities do.

Given the voluntary and distributed nature of community-based FLOSS development, human

resources and time pressure are usually not constraints in FLOSS development (Colazo and Fang,

2010). Unlike commercial software development, community-based FLOSS projects usually do

not set strict deadlines (Scacchi, 2002), instead having loosely defined timelines that are adjusted

frequently (Michlmayr et al., 2007). Therefore, crisis, which is characterized by high time pressure

and resources, seems unlikely to play an important role in evoking tasks in FLOSS contexts. Our

examination of FLOSS choose tasks confirmed this argument. Of the 300 tasks collected from 5

projects (described below in section 4.1), we found only one task that might be classified as crisis-

triggered, which was about a lawsuit between Fire and AOL regarding the logo and trademark

infringement. Therefore, acknowledging the possibility of having crisis-triggered tasks, such as

security issues that might bring severe consequences (Shaikh and Vaast, 2016), we only focus on

two types of triggers in this paper: problem and opportunity. The most common examples of

opportunities in FLOSS development include suggesting new features to be included in the

software. Identification of bugs, or individuals' emails asking for help in resolving a problem they

ran into are common examples of problems that might trigger a task (Annabi et al., 2008).

Applying McGrath’s (1984) task circumplex framework, we argue that problem-triggered

tasks contain more behavioral requirements while opportunity-triggered tasks require more

cognitive or conceptual requirements. Problem-triggered tasks are action-oriented (Hackman,

1968) and usually seek correct answers, while opportunities are ambiguous in nature (Cohen et al.,

1972), seeking preferred alternatives rather than strictly correct answers. Therefore, the ends of

the problem-triggered tasks are clear, and immediate actions/behaviors might be needed to solve

 10

these problems. In contrast, people have less clarity about what actions are appropriate for

opportunity-triggered tasks, and thus spend a large proportion of time on cognitive work such as

discussing the pros and cons of the approach to solve this kind of tasks.

2.3.2 Task topic

After the need for working on a task (i.e., a trigger) is identified, a task-resolution process is

initiated, and a set of actions and resources are deployed to finish the task. At this point, depending

on the topic of the tasks, other members of the project team may decide to get involved in the task,

and the task may require more or less discussion to work on.

To identify the characteristics that distinguish different tasks in FLOSS development, we apply

Wood (1986)’s theoretical model of tasks. Wood (1986) argued that all tasks contain three essential

components: products (entities produced by behaviors that can be observed independently of the

behaviors that produce them), required acts (behavior(s) required to create the defined product),

and information cues (facts that can be processed to make conscious judgments). The required acts

and information cues are task inputs that set limits on knowledge, skills and resources that required

for completing a task successfully (Wood, 1986). For example, in a bug-fixing task, the product is

the piece of software code that fixes the bug. The required acts are the activities to develop such

codes. The information cues are the information that can be used to make judgments during the

performance of the bug-fixing task.

In this research, we apply Wood’s framework to determine different task topics by looking for

differences in the information cues, required acts and products of the tasks. Specifically, we

consider two topics of choose tasks in software development activities: tactical tasks, the day-to-

day programming activities that maintain efficient operations of developing and testing software

functionality, and strategic tasks, the tasks concerned with the long-time health of a project (Drury

 11

et al., 2012). Tactical tasks constitute the primary work of the team, that is, software development,

e.g., bug fixes, additions of new features or product enhancements through a change in software.

Strategic tasks are tasks about the strategic direction for the project, such as social, organizational

and legal issues, or alliances and partnerships. An example of strategic tasks is to discuss and

decide a release date for the developing software.

3. Research Model and Hypotheses Development

In this section, we apply the task framework developed above to develop specific hypotheses about

the impact of task characteristics (i.e., trigger type and task topic) on participation in FLOSS

development tasks. In this research, we consider participation as having two aspects: people who

participate in the tasks and communication that they engage in in carrying out the tasks. We focus

on these two aspects of participation for the following two reasons.

First, it is well established in FLOSS research that community-based FLOSS teams cannot

survive without sufficient voluntary participation from individuals (Fang and Neufeld, 2009).

FLOSS teams are highly dynamic, similar to some online communities (Faraj et al., 2011). This

dynamism may indicate a turnover of leaders and members, which generally affects community

performance negatively (Ransbotham and Kane, 2011). Similarly, it is difficult to discuss and

complete a task (e.g., solving a problem, or designing a solution for a bug) without a sufficient

number of participants, especially given the voluntary nature of FLOSS participation.

Second, researchers have emphasized the importance of information-exchange process of

conducting tasks (e.g., Dennis et al., 2008; Clarke and O’Connor, 2012; Xu, 2016). How

interaction happens depends on the community. In FLOSS development, members participate from

around the world, meet face-to-face infrequently if at all, and thus interact primarily via text-based

information technologies (Wayner, 2000). In this context, a task cannot be completed unless other

 12

members engage in the task-related communication process by reading and responding to others’

messages.

In general, these two aspects indicate the needs for knowledge diversity and idea/information

generation, and more generally reflect members’ participation in different task activities (Licorish

and MacDonell, 2017). We next develop specific hypotheses regarding the impacts of trigger type

and task topic on participation.

3.1 Trigger Type

As we argued earlier, problem-triggered tasks contain more behavioral requirements while

opportunity-triggered ones require more cognitive or conceptual requirements. A specific example

of opportunity-triggered tasks is a feature-enhancement task, which provides people an

opportunity to discuss if a new feature is desired in a software program. Information such as users’

desires for the new feature, the feature requirements and software design feasibility need to be

gathered and shared. Licorish and MacDonell (2017) argued that tasks related to new features

enhancement involve extensive intellectual and cognitive processes. Therefore, more people might

be needed in opportunity-triggered tasks in order to provide the various information required.

Further, compared with problem tasks, some parts of opportunity-triggered tasks do not need

specific technical knowledge. For instance, if users want to just provide input on the desirability

of a new feature, they do not need to understand programming since they are not required to write

the code. Therefore, more people might be able to attend opportunity-triggered tasks due to the

low requirements on technical knowledge.

Further, organizational decision-making researchers have argued that opportunities might

indicate positive situations in which gains could be made, while problems indicate situations in

which an expected loss might occur (Fredrickson, 1985; Chattopadhyay et al., 2001). Dutton and

 13

Jackson (1987) argued that problems are aversive stimuli from which people tend to withdraw,

while “opportunities bestow status and prestige to those who deal with them” (p.82). These

emotions might attract people to attend an opportunity-triggered situations and deter people from

being involved with problem-triggered situations (Dutton and Jackson, 1987), since a major

extrinsic motivation for joining FLOSS development is to gain reputation (Crowston et al., 2012).

Therefore, we argue that individuals will be more likely to be attracted to opportunity-triggered

tasks than to problem-triggered tasks. Hence, we propose,

H1a: Problem-triggered choose tasks in community-based FLOSS development teams

will involve fewer participants than opportunity-triggered choose tasks.

We next consider communication needed to complete a choose task. In software development

context, problems such as defects or bugs identified in the software code might threaten the

software functionality and impact user’s acceptance of the software. Therefore, immediate actions

for correct answers might be needed to solve these problems. Once the correct answer is found by

one or more team members, there is usually no need to debate over the solution (Straus, 1999).

Therefore, the need to coordinate participants’ activities may be limited (Straus, 1999). However,

for opportunity-triggered tasks, participants seek preferred alternatives rather than correct answers.

The ends and means of this type of tasks are not clearly defined, which requires the team to spend

a great amount of time in discussing and deciding the merits of each alternative (Stewart and

Barrick, 2000), thus increasing communication.

Further, opportunity triggers are ambiguous. Processes dealing with such triggers thus seem

likely to resemble the garbage can model of decision making (Nutt, 1984), which was proposed

by Cohen and his colleagues in a study of organizational anarchies (Cohen et al., 1972). This

model proposes a decision process wherein task triggers, solutions, participants and choices dump

 14

together in a relatively independent fashion, and a solution is made when elements from these four

streams coincide under certain organizational structures. When discussing an opportunity-

triggered task such as adding a new feature in FLOSS development, people may dump all their

information and resources and discuss multiple issues in parallel regardless of their relevance.

Therefore, we expect opportunity-triggered tasks will involve more communication than problem-

triggered tasks. Hence,

H1b: Problem-triggered choose tasks in community-based FLOSS development teams

will involve less communication than opportunity-triggered choose tasks.

3.2 Task Topic

After a trigger, a task-resolution process is initiated by deploying different resources and actions

to finish the task. As noted above, the differences between tactical tasks and strategic tasks can be

analyzed using Wood (1986)’s framework. Tactical tasks and strategic tasks differ in all three

components in terms of products, required acts and information cues.

First, while tactical tasks result in a tangible technical product of software code, strategic tasks

result in non-tangible non-technical product of consensus on an aspect of the team or its process.

Considering information cues, we note that tactical tasks require technical cues, whereas strategic

tasks require social or process-related cues. To process technical cues and to develop software

require participants to possess domain-specific knowledge about not only the functionalities but

also the inner workings of the software (Von Krogh et al., 2003; Zhang et al., 2013), which might

create barriers for contribution to tactical tasks. On the other hand, strategic tasks face greater

uncertainty and require participation and discussions from a broader team of participants (Moe et

al., 2012). Some FLOSS projects even have established a formal way to deal with these tasks so

 15

that enough participants are involved. For example, GNOME project has committees and task

forces composed of volunteers to complete important strategic tasks (German, 2003).

Finally, required acts for tactical tasks deal with actions related to adding new features, fixing

bugs, updating documentation and so on (Howison and Crowston, 2014). In the FLOSS

development context, Howison and Crowston (2014) observed that when a task such as fixing a

bug or submitting a patch is clear to a developer, s/he prefers work alone on the task rather than

working with others; if the task is too complex or difficult for one to finish, s/he prefers to defer

rather than to collaborate. Medappa and Srivastava (2019) similarly argued that for this type of

tasks, developers prefer to work in a sequential manner rather than engaging in co-work. Thus, the

participants in a tactical task are limited, though others may have to be involved, e.g., to clarify

the bug, for quality control or final acceptance of a patch. In contrast, for strategic tasks, required

acts are more open ended and there is not an inherent preference for sole action. In summary, we

hypothesize:

H2a: Tactical choose tasks in community-based FLOSS development teams will

involve fewer participants than strategic choose tasks.

Considering communication exchanged in completing the tasks, we note the impact of all

three task elements. The importance of cues and products has been discussed above. Required acts

for tactical tasks include development-related acts such as identifying potential technical solutions,

evaluating different solutions and selecting the best solution. These acts are relatively well

structured as they are based on specific routines of software development procedures, such as

design and testing. Further, while team members communicate and make choices through mailing

lists or discussion fora about both tactical and strategic tasks, tactical tasks can take advantage of

an additional communications channel, that is, the software code itself. Software code is an active

 16

communication artifact in the sense that interacting with the software (e.g., by testing it) gives

developers direct feedback and provides explication of knowledge and insights without direct

discussion with other team members (Bolici et al., 2016). In FLOSS development in particular,

each developer can access the software code (i.e., the artifact of the work) at any time to inspect

the changes made by the other developers (Bolici et al., 2016). As a result, developers making

changes do not have to explain in detail what they have done: if others are curious, they can

examine the code themselves. Based on this argument, we suggest that tactical tasks should have

less need for explicit communication. Similarly, prior research on FLOSS development has found

that much FLOSS software development work does not require much explicit coordination

(Krishnamurthy, 2002; Howison and Crowston, 2014).

In contrast, strategic tasks are more often related to the strategic direction of the project, which

faces greater uncertainty, as the information required in such tasks is usually incomplete. Required

acts for strategic tasks include defining the issue, identifying relevant information and trying to

build consensus. Acts are less structured, meaning that the task process may extend over a

considerable period of time and involve many back-and-forth among developers. Moreover, for

strategic tasks, mailing lists or discussion fora might be the only channels through which team

members share knowledge with each other as these tasks do not benefit from communication via

the software code. Therefore, the participants need to go through the more complex process of

explicating all their knowledge and the knowledge of other relevant parties, such as asking

questions to make sure they understand each other’s messages. As a result, we hypothesize:

H2b: Tactical choose tasks in community-based FLOSS development teams will

involve less communication than strategic choose tasks.

 17

4. Research Method

To test the hypotheses developed above, we designed a quantitative study using messages

exchanged among developers and users in five community-based FLOSS projects.

4.1 Project Selection

We sought projects that would provide a meaningful basis for comparison across the two task

characteristics. As previously noted, FLOSS business models are diverse. To control for unwanted

systematic variance, we chose community-based projects (the focus of our study) that were

roughly similar in age and were all at production/stable development stage. Projects at this stage

have relatively well-developed membership and sufficient team interaction history to have

established choice processes, yet the software code still has room for improvement, which enabled

us to observe rich team-interaction processes. To control for the possibility that the development

tools used might structure the choice process, we selected projects that were all hosted on

SourceForge (http://www.sourceforge.net), a FLOSS development site popular at the time of data

collection that provides a consistent ICT infrastructure to developers. Finally, acknowledging that

the level of participation is heavily skewed across different projects (Crowston and Howison,

2005), we purposefully selected projects that develop different types of software. Specifically, we

selected projects that developed Enterprise Resource Planning (ERP) systems and projects

developing Instant Messenger (IM) clients.

 18

Following the above criteria, we randomly selected 3 established projects from the IM category:

Gaim (currently known as Pidgin), aMSN and Fire; and 2 from the ERP category1: WebERP and

OFBiz (currently known as Apache OFBiz2). Table I provides a comparison of these projects.

Table I. Project Summarya
Project Name Gaim (Pidgin) Fire aMSN WebERP OFBizb

Type IM Client IM Client IM Client ERP ERP
Lines of Codec 199,413 169,233 142,283 77,540 240,731
Primary programming
language

C C, C++,
Objective C

Tcl/Tk PHP Java

Webpage Pidgin.im Fire.
sourceforge.net

www.
amsnproject.net

www.
weberp.o
rg

ofbiz.
apache. org

Bytes of documentation
included in distribution

None 166K None 417K 1.1M

Type Multi-Protocol Multi-Protocol Single-Protocol N/A N/A
Project License GNU General

Public License
(GPL)

GPL GPL v2 GPL Apache v2

Developers 10 12 41d 27 35
Initial Release Nov. 1998 Apr. 1999 May 2002 Jan. 2003 Nov. 2001
a. Except as noted, data on Gaim (Pidgin), OFBiz and WebERP were collected from Openhub.net using

the compare projects function.
b. Source: https://www.openhub.net/p/Apache-OFBiz
c. Lines of code were determined using the cloc program applied to the source code download of the

release closest to the date of data collection.
d. Source: http://www.amsn-project.net/current-developers.php

4.2 Data and Unit of Analysis

We studied choose tasks that were carried out via the email discourse on the developers’ email

fora. To support communication and coordination among voluntary participants, FLOSS

development teams use a variety of electronic means, such as email lists, trackers and coding tools

(Barcellini et al., 2014; Storey et al., 2016). Among these sources, archives of email lists or

1 We had initially also selected the Compiere project for the ERP category. However, during data analysis we came

to realize that Compiere was not a community-based project like the others, since it was started by a company and
had both community and commercial aspects in its development. To avoid possible bias introduced by this project,
we decided to remove it from our study, resulting in an unbalanced design with 3 IM and 2 ERP projects.

2 At the time of the study, OFBiz was not under the Apache umbrella but was a community-based FLOSS project
like the other selected projects.

 19

discussion fora offer rich information for researchers to explore social aspects of community-based

FLOSS development (Guzzi et al., 2013). These sources have been used to study a variety of

topics, such as decision processes (Eseryel et al., 2020), group maintenance strategies used in

online communication (Wei et al., 2017), sustained participation (Fang and Neufeld, 2009), and

strategic interaction in knowledge-sharing processes (Kuk, 2006), among many others.

Email data were obtained from the FLOSSmole website (http://flossmole.org/). Though we

cannot completely rule out the possibility of off-list discussions occurring through other channels

(e.g., IRC, IM, phone or face-to-face meetings), at the time of data collection, FLOSS developers

on SourceForge used email as the main communication tool for collaborating and communicating

among developers and users (Zhang et al., 2013). This practice means that any discussions that

took place outside of the email fora would be invisible not only to us as researchers, but also to

numerous developers as well. Further, our analysis of the mailing list interactions did not reveal

references to any off-line discussions, suggesting that the data source we used provided a complete

view of the choice process, at least for the choices made there.

We selected the choice process episode as our primary unit of coding and analysis of choose

tasks, defined as a sequence of messages that begins with a task trigger that presents an opportunity

or a problem that needs to be worked on, includes the required acts of issue discussion and possibly

ends with a choice announcement (Annabi et al., 2008). To give an example, a trigger may be a

feature request or a report of a software bug. A choice announcement may be either a statement of

the intention to do something or a notice of an actual implementation of a fix. Note that some

choice processes did not result in a choice that was announced to the community, while others had

multiple announcements as the choice was revised. The messages in an episode capture the

 20

interactions among team members that constitute the process of making that choice and finishing

the task from start to finish.

Choice process episodes were identified from the continuous stream of available messages

through an initial coding process done independently by two of the authors. We started the analysis

by reading through the messages until we identified a message containing a trigger or an

announcement. Once we found a trigger or an announcement, we identified the sequence of

messages that embodied the team process for the choose task. We observed that teams generally

organize discussions in email threads, occasionally initiating new threads with the same or similar

subject line. Therefore, we developed a choice process episode by combining one or more threads

that used the same or a similar subject line as the initial message and that discussed the same main

issue. Our explorative evaluation of the threads showed that any such follow-ups were typically

posted within the following month, but extreme cases could be as many as 3 months. We therefore

searched for messages on the same or similar content up to three months after the posting date of

the last message on a thread. Since we were analyzing the messages retrospectively, we could

collect all messages related to the task over time.

The process of identifying messages to include in each episode proceeded iteratively. Two

researchers collected messages, shared the process they used with the research team, and revised

their processes based on feedback from the team. The pairwise inter-coder reliability among two

independent coders using percent agreement for each variable (Neuendorf, 2002) reached 85% and

80% respectively on task triggers and choice announcements. All differences between the coders

were reconciled through discussion to obtain the sample of episodes for analysis.

 21

Sampling of choice process episodes was stratified by project time: we chose 20 episodes from

the beginning, middle and end periods of each project3 based on a concern that the choice process

effort might be different at different stages of the software development (e.g., initial collaboration

vs. a more established team). The sample size was chosen to balance analysis feasibility with

sufficient power for comparisons. With 60 episodes per project, we have reasonable power for

comparison across projects while keeping the coding effort feasible.

This initial coding process collected 300 choice process episodes, each a collection of

messages with a trigger and a choice announcement if any. Since the subject of this research is the

participation and amount of communication in a software development task, we only consider

tasks that were completed. In our sample, all the tasks that did not make final choices (i.e., did not

have choice announcements) were removed from further analysis. As a result, 31 choice process

episodes were removed and 269 were kept (163 IM choice process episodes and 106 ERP ones).

Table II describes the distribution of the episodes across the five projects.

Table II. Distribution and Descriptive Statistics of Choice Episodes for the Five Projects
Project
Name

Project
Type

No. of Choice
Episodes

Number of Participants Amount of Communication
(Number of Messages)

Min Max Mean Median Min Max Mean Median
aMSN IM 57 1 14 4.02 3 2 49 8.54 4
Fire IM 56 2 8 3.29 3 2 18 5.84 4
Gaim IM 50 2 13 4.48 4 2 26 7.54 6

IM in total 163 1 14 3.91 3 2 49 7.31 5
OFBiz ERP 55 2 8 3.16 3 2 19 6.33 4
WebERP ERP 51 2 8 3.35 3 2 21 6.33 4

ERP in total 106 2 8 3.25 3 2 21 6.33 4
Total 269 1 14 3.65 3 2 49 6.92 4

3 For each project, the beginning and the ending periods were the first and last 20 choice process episodes found as
of the time of data collection (i.e., from the start of the project’s on-line presence to the most recent period). The
middle period for each project consisted of 20 episodes surrounding a major software release approximately halfway
between the beginning and ending periods. We chose to sample around a release period because making a release is
one of the key team choices for a FLOSS project.

 22

4.3 Measurements

In this section, we describe the independent and dependent variables and how they were coded.

Table III describes the variables.

Table III. Variable Description and Measures
Variable Variable Description Measures

Dependent variable
Number of
participants

Count variable: the number of unique
participants involved in a task

The number of unique
participants involved in a task

 Amount of
communication

Count variable: the number of messages that
make up a choice episode, which starts with a
trigger, regardless of who sending the message

The total number of messages
posted in the choice episode

Independent variable
Trigger Binary variable: the task is triggered by problems

or by opportunity
Problem (0); opportunity (1)

Task Topic Binary variable: the task is tactical or strategic in
nature

Tactical (0); Strategic (1)

Control variable
Duration Task completion time The number of days the messages

spanned in a choice episode
Period Three different data collection periods based on

software development cycle
Beginning (0); middle (1); end (2)

Project A dummy variable for every project in our
sample

WebERP (1); OFBiz (2); Gaim
(3); Fire (4); aMSN (5)

Dependent variables. As we discussed above, we capture two aspects of participation in a

choose task: people participating in the task and communication exchanged in carrying out the

task. We examine the first aspect by calculating the number of participants attracted to a particular

task. In our context, the task process was captured by choice process episodes. Therefore, the

number of participants was measured by the number of unique participants who posted messages

in the choice process episode. Communication in carrying out the task was measured by the volume

of communication, i.e., the total number of messages exchanged in the choice process episode.

Independent variables. Task trigger is a binary variable capturing whether a task was triggered

by a problem or an opportunity. For each choice process episode, the three authors coded the

trigger. A trigger was identified as a problem (coded as 0) based on the following criteria: 1) when

there are problems or questions to deal with (e.g., that the software code does not run correctly for

 23

the developers or the users); 2) when software bugs were identified; or 3) when there were strategic

issues that were challenges to deal with rather than opportunities (for example, when there seems

to be a breach of licensing agreements). On the other hand, 1) a clear identification of a desired

functionality or change in the code that provides new or changed functionality; and 2) strategic

issues that talked about plans for or issues with the projects were identified as an opportunity

(coded as 1). As a result, 163 episodes were coded as problem-triggered choose tasks and 106 were

coded as opportunity-triggered ones.

Task topic is also a binary variable. For each episode, three researchers coded each episode as

either a tactical (coded as 0) or strategic task (coded as 1) based on the topic discussed in the task.

Tactical tasks were identified as the team discussing and making choices on one of the following

questions, identified inductively from the analysis of messages in the choice process episode:

1) bug reports, 2) feature requests, 3) problem reports, 4) patch submissions, and 5) to-do lists.

Choice announcements for tactical tasks reflected either acceptance/rejection of a need for

software code modification or acceptance/rejection of a submitted code modification.

Strategic tasks were identified as discussing and making choices on one of the following

questions: 1) system design, 2) infrastructure/process, 3) business function, 4) release

management, and 5) other issues. Strategic choice announcements reflected acceptance/rejection

of a long-term strategic proposal for system design, infrastructure change and process

improvement or resource allocation including task assignment and time schedule. As a result, 207

episodes were coded as tactical tasks and 62 as strategic ones. During the coding process, any

disagreements about coding were discussed among the researchers until they were addressed.

Control variables. We also included several control variables to account for the influences of

time and project type. First, our sampling strategy involved collecting tasks from three different

 24

periods of the projects: the beginning, the middle time around a major release, and the end. We

expect that the different stages of software development might impact individuals’ participation

and their efforts. A three-category indicator variable, period, was used (0=beginning period,

1=middle, and 2=end) to control for potential time effects. Second, duration, which was also

time-related, captured task completion time by measuring the number of days the messages

spanned in a choice process episode. It controlled for the possibility that tasks that took a longer

time to reach a conclusion would thus attract more participants and produce more messages. Lastly,

we controlled the projects by introducing a five-category indicator variable, project (1=WebERP,

2=OFBiz, 3=Gaim, 4=Fire and 5=aMSN), to control for differences in the average participation

across projects. Table IV lists the descriptive information of the number of participants, the amount

of communication, and duration across projects, as well as the correlation among these variables.

Table IV. Descriptive Statistics and Spearman Correlations
 Mean SD Min. Max. 1 2 3
1. Participants 3.65 2.15 1 14 1
2. Messages 6.92 6.43 2 49 0.794** 1
3. Duration 3.33 4.26 1 28 .333** .417** 1

5. Results

5.1 Descriptive Statistics

Table V lists the descriptive statistics for the outcome variables for the different categories of

triggers and task topics. Both outcome variables, the number of participants and the volume of

communication, are count variables. Both are over-dispersed, i.e., their variances are bigger than

their means, counter to the equal mean and variance expected for a Poisson variable. We used a

Lagrange Multiplier test that fits a negative binomial model with ancillary parameter equal to zero

(0) (Orme and Combs-Orme, 2009) to test the severity of over-dispersion. The results indicated

that over-dispersion should not be a problem for participation counts (p=0.915 for ancillary

parameter > 0). However, the results indicated a statistically-significant over-dispersion for the

 25

volume of communication (p=0.002 for ancillary parameter > 0). Therefore, to test our hypotheses,

we conducted Poisson regression on H1a and H2a regarding the number of participants, and

negative binomial regression on H1b and H2b regarding the volume of communication, since

negative binomial method is more suitable to over-dispersed count data (Stanko, 2016). We present

each regression separately below4.

Table V. Descriptive Statistics for Trigger Type and Task Topic
Project
Type

Trigger type/Task
Topic

No. of
Episodes

No. of Participants No. of Messages
Mean Std Mean Std

IM Problem 105 3.31 1.80 5.86 4.67
ERP Problem 58 3.17 1.47 5.78 4.72

Problem tasks in total 163 3.26 1.68 5.83 4.67
IM Opportunity 58 4.98 3.04 9.93 10.01
ERP Opportunity 48 3.35 1.56 7.00 4.84

Opportunity tasks in total 106 4.25 2.60 8.60 8.19
IM Tactical 131 3.39 1.67 5.78 3.99
ERP Tactical 76 3.20 1.42 6.55 4.99

Tactical tasks in total 207 3.32 1.58 6.06 4.39
IM Strategic 32 6.03 3.71 13.56 12.66
ERP Strategic 30 3.40 1.71 5.77 4.25

Strategic tasks in total 62 4.76 3.19 9.79 10.27

5.2 Results of Hypothesis Testing

We used Poisson regression on two models to test hypotheses H1a and H2a regarding the impacts

of task characteristics on the number of participants in choose tasks. Variables were added to the

regression models in a stepwise way. Model 1(a) included only control variables, namely, duration,

the period from which the episodes were taken (the end period was used as default), and the project

(aMSN was used as the baseline), while model 2(a) represented a full test of the proposed factors

predicting participation. The results are shown in Table VI as incidence rate ratios, i.e., a

coefficient of 1 indicates no influence of the factor on the outcome; coefficients greater than 1

show a positive impact and coefficients less than 1 indicate a negative impact. The Nagelkerke

pseudo-R2 for the regression was 0.46, showing good predictive performance.

4 For robustness check, we also analyzed the data using a structural equation model. The results were identical to

the regression analyses. Therefore, for simplicity, we only presented the results from the regression analysis.

 26

Table VI. Poisson Regression Model Results Using Number of Participants as Dependent Variable
 Model 1(a) Model 2(a) Model 1(b) Model 2(b)

Constant 4.941*** (0.081) 7.537*** (0.100) 3.982***(0.071) 5.917*** (0.088)
Control Variables
 Duration 1.010 (0.007) 1.012 (0.007) 1.010 (0.007) 1.012 (0.007)

 Period (end as the reference period)
 Beginning 0.647***(0.078) 0.643***(0.078) 0.654***(0.078) 0.645*** (0.078)
 Middle 0.728*** (0.076) 0.789** (0.078) 0.731***(0.765) 0.792** (0.078)

Project (aMSN as the reference project)
 Fire 0.810* (0.099) 0.863 (0.100)
 Gaim 1.127 (0.094) 1.056 (0.096)
 OFBiz 0.787*(0.101) 0.743**(0.101)
 WebERP 0.833 (0.101) 0.798* (0.102)
Project type - IM 1.201**(0.067) 1.270*** (0.067)
Direct Effects

H1a: Trigger type-Problem 0.771*** (0.066) 0.760*** (0.065)
H2a: Task topic-Tactical 0.680*** (0.072) 0.663*** (0.071)
Log Likehood -520.21 -499.55 -526.03 -501.87
LR Chi-square 55.22*** 96.54*** 43.57*** 91.89***
N 269 269 269 269

Note: 1) Exponentiation of the coefficients are shown with standard errors in parentheses;
2) ***p<0.001, **p<0.01, *p<0.05

The findings revealed that, problem-triggered tasks involved significantly fewer participants

than opportunity-triggered tasks (p=0.000), supporting H1a. Tactical tasks involved significantly

fewer participants than strategic tasks (p=0.000), thus supporting H2a. Regarding the control

variables, first, the duration of a choice process episode was found to have no impact on the number

of participants. Second, the results showed that periods during which the choice process episodes

were collected played a role in driving members’ participation. More specifically, tasks from both

beginning and middle periods showed the participation of significantly fewer people than the end

period. This result is consistent with the growth in popularity and team size of the projects. Third,

compared to aMSN project in the IM category, the projects in the ERP category (i.e., OFBiz and

WebERP) involved significantly fewer participants, while the other two projects in the IM

category (i.e., Fire and Gaim) showed no difference. The results indicate that there was a difference

in participation between the two different types of projects we selected.

 27

Given the previous finding, we restructured the control variable project into a two-category

indicator variable (IM=0, and ERP=1) and reran the analysis. The results are shown in Table VI

Model 1(b) and 2(b). Consistent with the results from Model 1(a) and 1(b), H1a and H2a were

supported. Further, the result suggest that choose tasks in IM projects involved more participants

than those in ERP projects. We will explore this issue in more depth in section 5.4.

We used negative binomial regressions to test H1b and H2b. It is reasonable to expect that

more participants will lead to more communication. Therefore, we included the number of

participants as a control variable in these tests. Variables were added to the models as for the

previous test. The results are shown in Table VII. Model 1 included only duration, the number of

participants, periods (the end period was used as baseline), and the project (aMSN was used as

baseline) as control variables. In model 2, we added the direct impacts of trigger type and task

topic to test H1b and H2b. The findings showed that controlling for the number of participants, the

number of messages posted were not different between problem vs. opportunity triggered tasks

and between tactical vs. strategic tasks. Therefore, neither of the hypotheses H1b and H2b was

supported. Interestingly, in this regression there was a small positive coefficient for duration,

which means the longer the time needed for completing a choose task, the more messages were

generated. There was no significant difference across the five projects. The Nagelkerke pseudo-R2

was 0.91, indicating that the number of messages was nearly perfectly predicted by the number of

participants and duration.

 28

Table VII. Negative Binomial Model Results Using Number of Messages as Dependent Variable

 Model 1 Model 2
Constant 2.257*** (0.109) 2.169*** (0.153)
Control Variables
 Duration 1.017* (0.007) 1.016* (0.007)
 No. of participants 1.271***(0.013) 1.275***(0.015)

 Period (end as the reference period)
 Beginning 0.990 (0.077) 0.993 (0.078)
 Middle 1.046 (0.074) 1.050 (0.074)

Project (aMSN as the reference project)
 Fire 0.995 (0.091) 0.981 (0.092)
 Gaim 0.854 (0.091) 0.844 (0.092)
 OFBiz 1.150 (0.091) 1.140 (0.092)
 WebERP 1.045 (0.092) 1.040 (0.093)
Direct Effects

H1b: Trigger type-Problem 0.948 (0.063)
H2b: Task topic-Tactical 1.092 (0.074)
Log Likehood -631.33 -630.07
LR Chi-square 290.83*** 293.35***
N 269 269

Note: 1) Exponentiation of the coefficients are shown with standard errors in parentheses;
2) ***p<0.001, **p<0.01, *p<0.05

5.3 The Mediating Effect of the Number of Participants

Since we expected and found that more participants were associated with more communication,

we examined the mediating role of the number of participants between task characteristics and the

number of messages. First, we assessed a direct link from the number of participants to the number

of messages. Then we applied the bootstrap mediation-test suggested by Hayes (2013). We

examined the total and direct effects of each task characteristic on the number of messages and the

indirect effects through the number of participants. This method allows for testing each

independent variable (IV) in a separate model. In each model, we selected one factor from task

characteristics as the main IV to be tested and treated the other (together with duration, period and

project) as covariates to both the dependent variable and the mediator. Table VIII summarizes the

mediation test results.

 29

Table VIII. Mediating Effect of the Number of Participants

 Total Effects Direct Effects Indirect Effects

Independent
Variable Coefficient T-value Coefficient T-value Point

Estimate

Bias-corrected bootstrap
95% Confidence Intervals
Lower Upper

Trigger Type-
Opportunity 3.036 4.072*** 0.424 0.972 2.611 1.157 4.203

Task Topic-
Strategic 4.004 4.717*** -0.005 -0.010 4.009 2.048 6.202

Note: Duration, period and project were treated as dummies in the mediation analysis. *** p<0.001, **p<0.01, *
p<0.05.

From the results we can see that trigger type and task topic both had significant total effects on

the number of messages (p =0.000). However, when the number of participants was introduced to

each model as a mediator, none had a significant direct impact on the number of messages. The

indirect effects indicated the mediation effects through the number of participants. The results

showed the indirect effects for both task characteristics were significant, with the point estimates

of 2.611 (for trigger type) and 4.009 (for task topic) respectively, and 95 percent bias-correct

bootstrap confidence intervals of 1.157 – 4.203 (for trigger type) and 2.048 – 6.202 (for task topic)

respectively. Therefore, we concluded that the number of participants fully mediated the impacts

of the two task characteristics on the amount of communication.

5.4 Post-hoc Examination of the Moderating Role of Project Type

Our results confirmed the hypotheses that problem-triggered tasks and tactical tasks both involved

fewer participants than opportunity-triggered tasks and strategic tasks respectively. An interesting

finding from the analysis was that it seemed the numbers of participants were significantly

different across IM and ERP projects, which made us speculate that the effect of task

characteristics on the number of participants in a choose task might depend on the project type.

Applying RPOCESS developed by Hayes (2013), we conducted a post-hoc examination of the

 30

moderating effect of the project type5 in terms of IM vs. ERP. The purpose of this analysis was to

draw further insights regarding the impact of task characteristics on the number of participants

within project contexts, rather than making statistical inferences. The results summarized in Table

IX confirmed our speculation.

We can see that project type moderated the relationship between trigger type and the number

of participants (b=-1.126, t=-2.258, p=0.025), and it also moderated the relationship between

task topic and the number of participants (b=-2.522, t=-4.682, p=0.000). To present the

interaction effects more clearly, we plotted them in Figure 1.

Table IX. Moderating Effect of Project Type on the Relationship between Task Characteristics and the
Number of Participants

 Coefficient t LLCI ULCI
Task trigger à the number of participants

Constant 4.151 14.252*** 3.578 4.725
Period-Beginning -1.531 -5.203*** -2.110 -0.951
Period-Middle -1.034 -3.471*** -1.621 -.448
Duration 0.035 1.252 -0.020 0.090
Trigger type 1.479 4.595*** 0.845 2.113
Project type -0.290 -0.909 -0.919 0.339
Project type * trigger type -1.126 -2.258* -2.108 -0.144
Conditional effects of trigger type at values of the moderator
IM 1.479 4.595*** 0.845 2.113
ERP 0.353 0.925 -0.398 1.104

Task topic à the number of participants
Constant 4.101 15.837*** 3.591 4.611
Period-Beginning -1.664 -6.040*** -2.207 -1.122
Period-Middle -1.048 -3.757*** -1.597 -0.499
Duration 0.060 2.262* 0.008 0.112
Task topic 2.753 7.531*** 2.033 3.473
Project type -0.171 -0.643 -0.693 0.352
Project type * task topic -2.522 -4.682*** -3.583 -1.461

Conditional effects of trigger type at values of the moderator
IM 2.753 7.531*** 2.033 3.473
ERP 0.231 0.585 -0.547 1.009

Note: 1) ***p<0.001, **p<0.01, *p<0.05.
 2) LLCI: the lower limit confidence level; ULCI: the upper limit confidence level

5 Since the mediation test showed that the number of participants fully mediated the relationship between the task

characteristics and the number of messages, we only focused on the number of participants in the moderation
analysis.

 31

Figure 1. Interaction Effects between Task Characteristics and Project Types

The results show that opportunity-triggered tasks in the IM projects involved more participants

than problem-triggered tasks (b=1.479, t=4.595, p=0.000) as expected, while there was no

significant difference in the ERP projects (b=0.353, t=0.925, p=0.356). Similarly, strategic tasks

in the IM projects involved more participants than tactical tasks (b=2.753, t=7.531, p= 0.000) as

expected, while there was no significant difference in the ERP projects (b=0.231, t=0.585,

p=0.559). In other words, H1a regarding the difference between problem- and opportunity-

triggered tasks and H2a regarding the difference between tactical and strategic tasks for the number

of participants seemed to hold true only for the IM projects, but not for the ERP projects.

6. Discussion

The primary goal of this study was to investigate the impacts of two different task characteristics

(i.e., trigger type and task topic) on participation behavior in community-based FLOSS

development tasks. Using choose tasks as a particularly important type of software development

tasks, we observed that consistent with our hypotheses, problem-triggered vs. opportunity-

triggered tasks and tactical vs. strategic tasks did have different impacts on the number of

participants in the tasks. However, we did not find significant direct impacts of these task

characteristics on the amount of communication exchanged in completing the tasks when

 32

controlling for the effect of participants. Rather, the number of participants fully mediated the

relationships between task characteristics and the amount of communication.

The results highlight that task characteristics serve as direct antecedents of the number of

participants involved in a choose task, while as indirect antecedents of the amount of

communication exchanged in the task. It is the number of participants, the human resource of a

task that drives the amount of communication directly. It seems no matter what triggers the task

or what the task is about, the messages exchanged in a task will not increase unless the task attracts

more people to participate. In general, the results imply that in participation behavior, task

characteristics only influence how many people would like to participate in a task; after that, other

factors such as duration and project characteristics would take a leading role in affecting the

contribution levels of the participants. Therefore, our study distinguishes between two important

aspects of voluntary participation behavior (i.e., the number of participants and their efforts in

terms of the amount of communication).

Prior research in voluntary participation mainly focuses on one aspect of participation, or treat

these two aspects independently. For example, in the context of open contest, Chen et al. (2014)

found contest characteristics such as complexity and type significantly impact the number of

participants in contests. Licorish and MacDonell (2017) found that in Jazz project, significant

differences exist among different types of software tasks in number of participants and number of

messages exchanged; however, the authors did not control the impact of the number of participants

when investigated the variance in the number of messages exchanged in different tasks. A few

studies have emphasized the importance of project characteristics on developers’ contribution

behaviors. For example, a recent empirical study found that a match between project-level

characteristics (e.g., license type, project size, etc.) and developers’ motivation determines in

 33

FLOSS developers’ code contribution behavior (Belenzon and Schankerman, 2015). The

differential impacts of task characteristics on participants and communication in participation

behavior deserve further investigation.

Another interesting finding from our research is that, despite that our data generally supported

the hypotheses that opportunity-triggered/strategic tasks involve more participants than problem-

triggered/tactical tasks do (H1a and H2a), a post-hoc examination indicated between-project

difference might exist. Although we realize that the small sample size (5 projects in two categories)

does not allow us draw valid statistical inference from the post-hoc analysis, the interesting results

have led us rethink about the drivers for participation in FLOSS development tasks, and pointed

us to a boundary condition restricting the conclusions of H1a and H2a, which is project type. We

speculate that participation in the choose tasks, and software development tasks in general, is

driven not just by the demand of the task (e.g., urgency, information cues, or technical skills need

to finish the task) but also by the supply of different actors interested in the project.

For problem-triggered tasks and tactical tasks, we initially suggested that the demand of these

tasks would drive individuals’ participation. These tasks seem to have only attracted participants

with technical skills and abilities to contribute to the code and solve problems. As a result, we see

similar numbers of participation in problem-triggered and tactical tasks regardless of the project

type. However, for opportunity-triggered and strategic tasks, time constraints and technical

contribution barriers are not major issues. Prior work has suggested the type of software developed

by a project or software application domain as an important factor that influences user interests,

defines target population types and size, and impacts development activities (Stewart et al., 2006;

Santos et al., 2013; Comino et al., 2007). In line with these studies, we posit that in our research

 34

context, the two different types of software developed by IM and ERP projects help define different

sets of actors interested in the projects, that is, the supply.

Specifically, we suggest that in the IM projects, the majority of participants understand the

general workings of the whole software and therefore may be able to make some contribution to

development-related tasks. As well, because IM software is designed for individual use, we expect

there to be more users overall. We further expect that most of the affiliated developers use the IM

software personally, hence their interests in contributing to the project. As opportunities represent

areas where new features may be added that affect all users of the software, developers would

naturally have an opinion on tasks that may end up changing their software use experience, and so

be motivated to contribute.

In contrast, in the ERP projects, we suggest that the type of developers and users and the

structure of the software limit the capability and motivation of individuals to get involved in

software development tasks. First, we note that compared to IM systems, ERP systems require

more specialized domain knowledge to be able to contribute. Further, these systems exhibit a

modular system design (Paulish, 2002) with modules for different kinds of functions. Based on

findings from prior research (Liang et al., 2010), we postulate that developers specialize their

development efforts in related modules of ERP systems based on their knowledge of the domain

for those modules. A second difference is that a typical ERP developer is unlikely to use the

software personally, but rather develops and/or implements one or more modules of the software

for others (e.g., company employees or a consulting customer). Furthermore, it is possible that

companies may choose to implement only a subset of the modules of the given ERP system, further

limiting how many developers are interested in a development task.

 35

For these two reasons, we expect that only a subset of developers will have the specific external

knowledge and interests needed to contribute to each choose task in ERP projects. For example, a

person who specializes in production-planning modules may not be interested in or knowledgeable

about the accounting and tax rules that are important to financial accounting and control modules.

Therefore, that developer may not be able to contribute even to opportunity-triggered or strategic

tasks in those areas. Contrariwise, if the ERP project has only a few experts in the area of

production planning, they would be the only ones to respond to all types of tasks involving

production planning, whether the task is triggered by a problem or an opportunity, and whether it

is a tactical or a strategic one. We suggest that this limit on the supply of developers is why we see

about the same number of developers responding to tasks in the ERP projects, regardless of the

task triggers or task topics. As another example of the effects of expertise on the supply of

developers, consider the Heartbleed security bug in the OpenSSL library, which was attributed to

the project having too few developers to properly audit the code (only four core developers) due

in part to the complexity of the implementation making it difficult to understand the code

(Williams, 2014).

In summary, in contrast to conventional software development organizations where the number

of developers is a managerial decision, FLOSS projects are driven by voluntary participation. As

a result, the number of participants in different software development tasks reflects the participants’

interests and abilities as much as the task characteristics.

7. Implications and Conclusions

We conclude by acknowledging some limitations in our study before turning to the theoretical and

practical implications of our results.

 36

7.1 Limitations and Future Research Directions

As with all research, our results have limitations that affect their generalizability and suggest

directions for future research. First, we selected only choose tasks to test the hypotheses. We argue

that this task type is characteristic of FLOSS development tasks, but the choice does limit the

generalizability of the results. For example, we did not study negotiation tasks that involve

conflicts in our research. Although negotiation tasks are less common in FLOSS development than

choose tasks, they have attracted researchers’ interests in recent years (Filippova and Cho, 2016;

Gamalielsson and Lundell, 2014). Future research should apply the framework of this research to

other types of tasks in McGrath’s task circumplex.

Second, the task processes (i.e., choice process episodes in this research) were extracted from

messages sent to the developers’ email fora. Thus, it is conceivable that the record of the episode

does not capture all the communications related to a certain task. A specific limitation of this study

is that we did not include messages from synchronous discussion fora (e.g., Internet Relay Chat,

Instant Messaging or phone calls) into our analysis. While we found no evidence that these

channels were used for the episodes we studied, future research should examine more

systematically how people participate in these synchronous communication channels and what

roles these media play in development practices.

Third, our hypothesis testing was only based on data from 269 choice process episodes in five

FLOSS development projects. We purposefully selected two project categories (i.e., ERP and IM)

and randomly selected 5 projects from these two categories after applying the project selection

criteria. This project selection strategy might bring concerns of sample selection bias. Another

concern is about the small sample size. At the time of our study, we had to rely on intensive manual

coding to identify choice process episodes, different task triggers, and task topics. Having a

 37

tractable sample size enabled us to manage the coding as well as to conduct the required statistical

analysis. However, it might be beneficial in future research to sample choose tasks across a larger

size of projects to assess the generalizability of our findings. To do so, some automated coding

techniques are necessary to reduce the effort of manual coding in this research to a manageable

level. The features implemented in current development platforms such as GitHub (e.g., issues,

pull request, etc.) might make some of the coding straightforward.

Finally, the current study does not examine the content of the tasks or the task processes in

detail. Understanding in more detail the process by which the participants finish tasks would

complement our findings on participation.

7.2 Research Implications

Despite these limitations, this research contributes to the literature and practice in several ways.

 First, this research explores participation based on task characteristics and investigates how

different task characteristics influence participation in terms of the number of participants and the

amount of communication in FLOSS development tasks. In contrast, most prior research has

focused on motivational factors and project factors that influence participation at individual or

project levels. Our findings provide empirical support to the important effects of different task

characteristics on individual participation behaviors at a task level. Thus, our research contributes

to the FLOSS literature by uncovering this important yet understudied relationship between task

characteristics and individual behaviors.

Second, our research highlights the central role of the number of participants. In the analysis

of the predictors of communication, we found that the impacts of task characteristics on

communication were fully mediated by the number of participants. In other words, the tasks differ

in how many participants they attracted, not how much the participants contributed to the task,

 38

though tasks that took longer to resolve did seem to provide the opportunity for participants to

contribute more.

Third, our research contributes to FLOSS literature by providing useful insights into the

relationship between task characteristics and participation in different projects. By closely

examining two types of projects (IM vs. ERP), we speculate that the software application domain

defines the supply of different resources, which interacts with the different task characteristics to

influence participation in FLOSS development tasks. Therefore, project application domain might

serve as a boundary condition for the impact of task characteristics on participation behavior in

FLOSS development tasks. Prior research has examined its direct impact on project outcomes such

as project attractiveness and project success (Santos et al., 2013; Crowston and Scozzi, 2002).

However, limited research has investigated the impact of project application domain on project

development activities. This research suggests a line of future research that could examine how

the application domain, as a project-level characteristic, impacts FLOSS development activities

directly as well as indirectly by working with other variables of interests (e.g., task characteristics

in our research).

7.3 Practical Implications

The results of this research have several important practical implications for FLOSS participants

and leaders as well. Many previous studies have emphasized the importance of attracting and

keeping voluntary participation levels to ensure the continuity of FLOSS communities. Our study

provides an understanding of the relationship between task characteristics and participation, which

can enable the FLOSS administrators to manipulate task types posted to the email lists (e.g.,

encourage more opportunity-triggered or strategic tasks) to attract voluntary participation.

 39

Second, our findings suggest that different task characteristics involve different levels of

participation, which in turn, influence communication levels. This finding is useful for FLOSS

participants to select which development tasks to participate in. For example, if a newcomer wants

to gain recognition in the short term, attending opportunity-triggered and/or strategic tasks might

be helpful since these two types of tasks involve a higher number of participants and generate more

discussions. Participation in such a task may give a newcomer higher visibility with the other

developers who are involved in the same discussion.

References

Annabi, H., Crowston, K. and Heckman, R. (2008), “Depicting what really matters: using episodes
to study latent phenomenon”, in Proceedings of International Conference on Information
Systems (ICIS) 2008, December 14-17,, Paris, France. pp. Paper 183.

Bagozzi, R. P. and Dholakia, U. M. (2006), “Open source software user communities: a study of
participation in Linux user groups”, Management Science, Vol. 52 No. 7, pp. 1099-1115.

Barcellini, F., Détienne, F. and Burkhardt, J.-M. (2014), “A situated approach of roles and
participation in open source software communities”, Human-Computer Interaction, Vol.
29 No. 3, pp. 205-255.

Barlow, J. B. and Dennis, A. R. (2016), “Not as smart as we think: a study of collective intelligence
in virtual groups”, Journal of Management Information Systems, Vol. 33 No. 3, pp. 684-
712.

Belenzon, S. and Schankerman, M. (2015), “Motivation and sorting of human capital in open
innovation”, Strategic Management Journal, Vol. 36 No. 6, pp. 795-820.

Bolici, F., Howison, J. and Crowston, K. (2016), “Stigmergic coordination in FLOSS development
teams: integrating explicit and implicit mechanisms”, Cognitive Systems Research, Vol. 38
No. pp. 14-22.

Campbell, D. J. (1988), “Task complexity: a review and analysis”, Academy of Management
Review, Vol. 13 No. 1, pp. 40-52.

Chattopadhyay, P., Glick, W. H. and Huber, G. P. (2001), “Organizational actions in response to
threats and opportunities”, Academy of Management Journal, Vol. 44 No. 5, pp. 937-955.

Chen, P.-Y., Pavlou, P. A. and Yang, Y. (2014), “Determinants of open contest participation in
online labor markets”, working paper No. 15-074, Fox School of Business, Temple
University.

 40

Clarke, P. and O’connor, R. V. (2012), “The situational factors that affect the software
development process: towards a comprehensive reference framework”, Information and
Software Technology, Vol. 54 No. 5, pp. 433-447.

Cohen, M. D., March, J. G. and Olson, J. P. (1972), “A garbage can model of organizational
choice”, Administrative Science Quarterly, Vol. 17 No. 1, pp. 1-25.

Colazo, J. A. and Fang, Y. (2010), “Following the sun: temporal dispersion and performance in
open source software project teams”, Journal of the Association for Information Systems,
Vol. 11 No. 11/12, pp. 684-707.

Comino, S., Manenti, F. M. and Parisi, M. L. (2007), “From planning to mature: on the success of
open source projects”, Research Policy, Vol. 36 No. 10, pp. 1575-1586.

Crowston, K. (2008), “The bug fixing process in proprietary and free/libre open source software:
a coordination theory analysis”, Grover, V. & Markus, M. L. (eds.) Business Process
Transformation. M.E. Sharpe, Armonk, NY, pp. 69-100.

Crowston, K. and Howison, J. (2005), “The social structure of free and open source software
development”, First Monday, Vol. 10 No. 2, pp. https://doi.org/10.5210/fm.v10i2.1207.

Crowston, K. and Scozzi, B. (2002), “Open source software projects as virtual organisations:
competency rallying for software development”, IEE Proceedings-Software, Vol. 149 No.
1, pp. 3-17.

Crowston, K., Wei, K., Howison, J. and Wiggins, A. (2012), “Free/Libre open-source software
development: what we know and what we do not know”, ACM Computing Surveys
(CSUR), Vol. 44 No. 2, pp. Article 7.

De Reuver, M., Sørensen, C. and Basole, R. C. (2018), “The digital platform: a research agenda”,
Journal of Information Technology, Vol. 33 No. 2, pp. 124-135.

Deng, X. N. and Joshi, K. D. (2016), “Why individuals participate in micro-task crowdsourcing
work environment: revealing crowdworkers’ perceptions”, Journal of the Association for
Information Systems, Vol. 17 No. 10, pp. 648-673.

Dennis, A. R., Fuller, R. M. and Valacich, J. S. (2008), “Media, tasks, and communication
processes: a theory of media synchronicity”, MIS Quarterly, Vol. 32 No. 3, pp. 575-600.

Dix, A., Ramduny-Ellis, D. and Wilkinson, J. (2004), “Trigger analysis: understanding broken
tasks”, Diaper, D. & Stanton, N. (eds.) The handbook of task analysis for human-computer
interaction. Lawrence Erlbaum Associates, Inc, Mahwah, NJ, pp. 381-400.

Drury, M., Conboy, K. and Power, K. (2012), “Obstacles to decision making in Agile software
development teams”, Journal of Systems and Software, Vol. 85 No. 6, pp. 1239-1254.

Dutton, J. E. and Jackson, S. E. (1987), “Categorizing strategic issues: links to organizational
action”, Academy of Management Review, Vol. 12 No. 1, pp. 76-90.

Economides, N. and Katsamakas, E. (2006), “Two-sided competition of proprietary vs. open
source technology platforms and the implications for the software industry”, Management
Science, Vol. 52 No. 7, pp. 1057-1071.

Ehls, D. and Herstatt, C. (2015), “Community joining, progressing and leaving: developing an
open source participation lifecycle model”, Herstatt, C. & Ehls, D. (eds.) Open source

 41

innovation: the phenomenon, participant’s behaviour, business implications. Routledge,
New York, NY, pp. 115-136.

Eseryel, U. Y., Wei, K. and Crowston, K. (2020), “Decision-making processes in community-
based free/libre open source software-development teams with internal governance: an
extension to decision-making theory”, Communications of the Association for Information
Systems, Vol. 46 No. 1, pp. Artile 20.

Fang, X., Chan, S., Brzezinski, J. and Xu, S. (2005-6), “Moderating effects of task type on wireless
technology acceptance”, Journal of Management Information Systems, Vol. 22 No. 3, pp.
123-157.

Fang, Y. and Neufeld, D. (2009), “Understanding sustained participation in open source software
projects”, Journal of Management Information Systems, Vol. 25 No. 4, pp. 9-50.

Faraj, S., Jarvenpaa, S. L. and Majchrzak, A. (2011), “Knowledge collaboration in online
communities”, Organization Science, Vol. 22 No. 5, pp. 1224-1239.

Filippova, A. and Cho, H. (2016), “The effects and antecedents of conflict in free and open source
software development”, in Proceedings of the 19th ACM Conference on Computer-
Supported Cooperative Work & Social Computing. ACM, pp. 705-716.

Fredrickson, J. W. (1985), “Effects of decision motive and organizational performance level on
strategic decision processes”, Academy of Management Journal, Vol. 28 No. 4, pp. 821-
843.

Gamalielsson, J. and Lundell, B. (2014), “Sustainability of open source software communities
beyond a fork: how and why has the LibreOffice project evolved?”, Journal of Systems
and Software, Vol. 89 No. 1, pp. 128-145.

German, D. M. (2003), “The GNOME project: A case study of open source, global software
development”, Software Process: Improvement and Practice, Vol. 8 No. 4, pp. 201–215.

Griffin, R. W., Welsh, A. and Moorhead, G. (1981), “Perceived task characteristics and employee
performance: a literature review”, Academy of Management Review, Vol. 6 No. 4, pp. 655-
664.

Guzzi, A., Bacchelli, A., Lanza, M., Pinzger, M. and Van Deursen, A. (2013), “Communication
in open source software development mailing lists”, in 2013 10th Working Conference on
Mining Software Repositories (MSR). IEEE, pp. 277-286.

Hackman, J. R. (1968), “Effects of task characteristics on group products”, Journal of
Experimental Social Psychology, Vol. 4 No. 2, pp. 162-187.

Hayes, A. F. (2013), Introduction to Mediation, Moderation, and Conditional Process Analysis: a
Regression-Based Approach, The Guilford Press, New York, NY.

Hertel, G., Niedner, S. and Herrmann, S. (2003), “Motivation of software developers in Open
Source projects: an Internet-based survey of contributors to the Linux kernel”, Research
Policy, Vol. 32 No. 7, pp. 1159-1177.

Howison, J. and Crowston, K. (2014), “Collaboration through open superposition: a theory of the
open source way”, MIS Quarterly, Vol. 38 No. 1, pp. 29-50.

 42

Krishnamurthy, S. (2002), “Cave or community? an empirical examination of 100 mature open
source projects”, First Monday, Vol. 7 No. 6, pp. Available at SSRN:
https://ssrn.com/abstract=667402.

Kuk, G. (2006), “Strategic interaction and knowledge sharing in the KDE developer mailing list”,
Management science, Vol. 52 No. 7, pp. 1031-1042.

Lakhani, K. R. and Von Hippel, E. (2003), “How open source software works:" free" user-to-user
assistance”, Research Policy, Vol. 32 No. 6, pp. 923-943.

Liang, T. P., Jiang, J., Klein, G. S. and Liu, J. Y. C. (2010), “Software quality as influenced by
informational diversity, task conflict and learning in project teams”, IEEE Transactions on
Engineering Management, Vol. 57 No. 3, pp. 477-487.

Licorish, S. A. and Macdonell, S. G. (2017), “Exploring software developers’ work practices: task
differences, participation, engagement, and speed of task resolution”, Information &
Management, Vol. 54 No. 3, pp. 364-382.

Luciano, M. M., Bartels, A. L., D’innocenzo, L., Maynard, M. T. and Mathieu, J. E. (2018),
“Shared team experiences and team effectiveness: Unpacking the contingent effects of
entrained rhythms and task characteristics”, Academy of Management Journal, Vol. 61 No.
4, pp. 1403-1430.

Mcgrath, J. E. (1984), Groups: Interaction and Performance, Prentice-Hall Englewood Cliffs, NJ.

Medappa, P. K. and Srivastava, S. C. (2019), “Does superposition influence the success of FLOSS
projects? an examination of open-source software development by organizations and
individuals”, Information Systems Research, Vol. 30 No. 3, pp. 764-786.

Michlmayr, M., Hunt, F. and Probert, D. (2007), “Release management in free software projects:
practices and problems”, in Feller, J., Fitzgerald, B., Scacchi, W. & A, S., eds, IFIP
International Conference on Open Source Systems: Open Source Development, Adoption
and Innovation. Springer, pp. 295-300.

Mintzberg, H. (1973), The Nature of Managerial Work, Harper & Row, New York.

Mintzberg, H., Raisinghani, D. and Theoret, A. (1976), “The structure of “unstructured" decision
process”, Adminstrative Science Quarterly, Vol. 21 No. 2, pp. 246-275.

Moe, N. B., Aurum, A. and Dybå, T. (2012), “Challenges of shared decision-making: a multiple
case study of agile software development”, Information and Software Technology, Vol. 54
No. 8, pp. 853-865.

Neuendorf, K. A. (2002), The Content Analysis Guidebook, Sage Publications, Thousand Oaks,
CA.

Nouri, R., Erez, M., Rockstuhl, T., Ang, S., Leshem‐Calif, L. and Rafaeli, A. (2013), “Taking
the bite out of culture: the impact of task structure and task type on overcoming
impediments to cross‐cultural team performance”, Journal of Organizational Behavior,
Vol. 34 No. 6, pp. 739-763.

Nutt, P. C. (1984), “Types of organizational decision processes”, Administrative Science
Quarterly, Vol. 29 No. 3, pp. 414-450.

 43

Oh, W. and Jeon, S. (2007), “Membership herding and network stability in the open source
community: the Ising perspective”, Management Science, Vol. 53 No. 7, pp. 1086-1101.

Orme, J. G. and Combs-Orme, T. (2009), Multiple Regression with Discrete Dependent Variables,
Oxford University Press, New York, NY.

Paulish, D. J. (2002), Architecture-Centric Software Project Management: A Practical Guide,
Addison-Wesley Professional, Boston, MA.

Poole, M. S. and Roth, J. (1989), “Decision development in small group IV: a typology of group
decision paths”, Human Communication Research, Vol. 15 No. 3, pp. 323-356.

Ransbotham, S. and Kane, G. C. (2011), “Membership turnover and collaboration success in online
communities: explaining rises and falls from grace in Wikipedia”, MIS Quarterly, Vol. 35
No. 3, pp. 613-627.

Roberts, J. A., Hann, I.-H. and Slaughter, S. A. (2006), “Understanding the motivations,
participation, and performance of open source software developers: a longitudinal study of
the Apache projects”, Management Science, Vol. 52 No. 7, pp. 984-999.

Santos, C., Kuk, G., Kon, F. and Pearson, J. (2013), “The attraction of contributors in free and
open source software projects”, The Journal of Strategic Information Systems, Vol. 22 No.
1, pp. 26-45.

Scacchi, W. (2002), “Understanding the requirements for developing Open Source Software
systems”, IEE Proceedings Software, Vol. 149 No. 1, pp. 24--39.

Shaikh, M. and Vaast, E. (2016), “Folding and unfolding: balancing openness and transparency in
open source communities”, Information Systems Research, Vol. 27 No. 4, pp. 813-833.

Smart, C. and Vertinsky, I. (1977), “Designs for cirisis decision units”, Administrative Science
Quarterly, Vol. 22 No. 1, pp. 640-657.

Speier, C., Vessey, I. and Valacich, J. S. (2003), “The effects of interruptions, task complexity,
and information presentation on computer-supported decision-making performance”,
Decision Sciences, Vol. 34 No. 4, pp. 771-796.

Stanko, M. A. (2016), “Toward a theory of remixing in online innovation communities”,
Information Systems Research, Vol. 27 No. 4, pp. 773-791.

Steinmacher, I., Conte, T. U. and Gerosa, M. A. (2015), “Understanding and supporting the choice
of an appropriate task to start with in open source software communities”, in proceedings
of the 48th Hawaii International Conference on System Sciences, Jan. 5-8, Kauai, HI, USA.
IEEE, pp. 5299-5308.

Stewart, G. L. and Barrick, M. R. (2000), “Team structure and performance: assessing the
mediating role of intrateam process and the moderating role of task type”, Academy of
Management Journal, Vol. 43 No. 2, pp. 135-148.

Stewart, K. J., Ammeter, A. P. and Maruping, L. M. (2006), “Impacts of license choice and
organizational sponsorship on user interest and development activity in open source
software projects”, Information Systems Research, Vol. 17 No. 2, pp. 126-144.

 44

Storey, M.-A., Zagalsky, A., Figueira Filho, F., Singer, L. and German, D. M. (2016), “How social
and communication channels shape and challenge a participatory culture in software
development”, IEEE Transactions on Software Engineering, Vol. 43 No. 2, pp. 185-204.

Straus, S. G. (1999), “Testing a typology of tasks: an empirical validation of McGrath’s (1984)
group task circumplex”, Small Group Research, Vol. 30 No. 2, pp. 166-187.

Venkatesh, V., Thong, J. Y. and Xu, X. (2016), “Unified theory of acceptance and use of
technology: a synthesis and the road ahead”, Journal of the Association for Information
Systems, Vol. 17 No. 5, pp. 328-376.

Von Krogh, G., Spaeth, S. and Lakhani, K. R. (2003), “Community, joining, and specialization in
open source software innovation: a case study”, Research Policy, Vol. 32 No. 7, pp. 1217-
1241.

Wayner, P. (2000), Free For All, HarperCollins, New York.

Wei, K., Crowson, K., Eseryel, U. Y. and Heckman, R. (2017), “Roles and politeness behavior in
community-based free/libre open source software development”, Information &
Management, Vol. 54 No. 5, pp. 573-582.

Williams, C. (2014). “OpenSSL Heartbleed: bloody nose for open-source bleeding hearts. The
Register ”, available at
https://www.theregister.com/2014/04/11/openssl_heartbleed_robin_seggelmann/
(accessed January 27, 2021).

Wood, R. E. (1986), “Task complexity: definition of the construct”, Organizational Behavior and
Human Decision Processes, Vol. 37 No. 1, pp. 60-82.

Xu, B. and Jones, D. R. (2010), “Volunteers' participation in open source software development:
a study from the social-relational perspective”, ACM SIGMIS Database, Vol. 41 No. 3, pp.
69-84.

Xu, B., Jones, D. R. and Shao, B. (2009), “Volunteers’ involvement in online community based
software development”, Information & Management, Vol. 46 No. 3, pp. 151-158.

Xu, J. D. (2016), “Retaining customers by utilizing technology-facilitated chat: mitigating website
anxiety and task complexity”, Information & Management, Vol. 53 No. 5, pp. 554-569.

Zhang, C., Hahn, J. and De, P. (2013), “Continued participation in online innovation communities:
does community response matter equally for everyone?”, Information Systems Research,
Vol. 24 No. 4, pp. 1112-1130.

Zigurs, I. and Buckland, B. K. (1998), “A theory of task/technology fit and group support systems
effectiveness”, MIS quarterly, Vol. 22 No. 3, pp. 313-334.

Zmud, R. W. (1980), “Management of large software development efforts”, MIS quarterly, Vol. 4
No. 2, pp. 45-55.

