
Information Systems Success in Free and Open Source Software

Development: Theory and Measures
1

Kevin Crowston*, James Howison* and Hala Annabi+

*Syracuse University School of Information Studies
4-206 Centre for Science and Technology

Syracuse, NY 13244-4100 USA

+University of Washington, The Information School
Box 352840

Suite 370 Mary Gates Hall
Seattle, WA 98195-2840 USA

crowston@syr.edu, jhowison@syr.edu, hpannabi@u.washington.edu

Phone: +1 315 443-1676, Fax: +1 866 265-7407

Pre-print of publication scheduled for early 2006, please cite as:

Crowston, K., Howison, J., and Annabi, H. (in press). Information systems success in free
and open source software development: Theory and measures. Software Process:

Improvement and Practice (Special Issue on Free/Open Source Software Processes.)

1 This research was partially supported by NSF Grants 03-41475 and 04-14468. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation. The authors thank Chengetai Masango, Kangning Wei, Yeliz Eseryel and Qing Li for their
contributions to the paper. Earlier versions of this paper appeared as:

Crowston, K., Annabi, H., & Howison, J. (2003). Defining open source software project success. In Proceedings of the 24th

International Conference on Information Systems (ICIS 2003). Seattle, WA.

Crowston, K., Annabi, H., Howison, J., & Masango, C. (2004). Towards a portfolio of FLOSS project success measures.
Paper presented at the Workshop on Open Source Software Engineering, 26th International Conference on Software

Engineering, Edinburgh.

Information Systems Success in Free and Open Source Software

Development: Theory and Measures

Abstract

Information systems success is one of the most widely used dependent variables in
information systems (IS) research, but research on Free/Libre and Open Source software
(FLOSS) often fails to appropriately conceptualize this important concept. In this paper, we
reconsider what success means within a FLOSS context. We first review existing models of IS
success and success variables used in FLOSS research and assess them for their usefulness,
practicality and fit to the FLOSS context. Then, drawing on a theoretical model of group
effectiveness in the FLOSS development process, as well as an online discussion group with
developers, we present additional concepts that are central to an appropriate understanding of
success for FLOSS.

In order to examine the practicality and validity of this conceptual scheme, the second
half of our paper presents an empirical study that demonstrates its operationalization of the
chosen measures and assesses their internal validity. We use data from SourceForge to measure
the projectÕs effectiveness in team building, the speed of the project at responding to bug reports
and the projectÕs popularity. We conclude by discussing the implications of this study for our
proposed extension of IS success in the context of FLOSS development and highlight future
directions for research.

Keywords: Free/libre open source software, information systems success, concept development,

survival analysis

Information Systems Success in Free and Open Source Software

Development: Theory and Measures

The long-term goal of our research is to identify processes that enable distributed
software team performance, specifically, the performance of Free/Libre Open Source Software
(FLOSS) development teams. In this paper, we take a needed step in this direction by developing
measures for the success of FLOSS projects. This step is needed because we will not be able to
improve software processes if we cannot identify what constitutes an improvement. Information
systems (IS) success is one of the most widely used dependent variables in information systems
research. Not surprisingly, much attention has been given to how best to measure it (e.g.,
DeLone & McLean, 1992, 2002, 2003; Rai et al., 2002; Seddon, 1997; Seddon et al., 1999).
However, the unique nature of FLOSS development makes some measures more appropriate
than others and requires the addition of hitherto unconsidered measures.

FLOSS is a broad term used to embrace software that is developed and released under
either a Òfree softwareÓ or an Òopen sourceÓ license. Both Open Source and Free Software are
free in two senses: Òfree as in speechÓ, meaning that the code may be redistributed and reused in
other FLOSS projects, and Òfree as in beerÓ, meaning that the software is available for download
without charge2. As well, many (though by no means all) FLOSS developers contribute to
projects as volunteers without working for a common organization or being paid. As we will
discuss, these two characteristics have implications for the applicability of certain measures of
success.

It is important to develop measures of success for FLOSS projects for at least two
reasons. First, having such measures will be useful for FLOSS project leaders in assessing their
projects. In some cases, FLOSS projects are sponsored by third parties, so measures are useful
for sponsors to understand the return on their investment. Second, FLOSS is an increasingly
visible and copied mode of systems development. Millions of users, including major
corporations, depend on FLOSS systems such as Linux (and, of course, the Internet, which is
heavily dependent on FLOSS tools), but as Scacchi (2002a) notes, Òlittle is known about how
people in these communities coordinate software development across different settings, or about
what software processes, work practices, and organizational contexts are necessary to their
successÓ. An EU/NSF workshop on priorities for FLOSS research identified the need both for
learning Òfrom open source modes of organization and production that could perhaps be applied

2 The free software movement and the open source movement are distinct but share important

characteristics. The licenses they use allow users to obtain and distribute the softwareÕs original
source without charge (software is Òfree as in beerÓ) and to inspect, modify and redistribute
modifi cations to the source code. While the open source movement views these freedoms
pragmatically (as a Ôdevelopment methodologyÕ), the Free Software movement emphasizes the
meaning of Òfree as in speech,Ó which is captured by the French/Spanish `libreÕ, and one of their
methods of supporting those freedoms is Òcopyleft,Ó famously embodied in the General Public
License, meaning that derivative works must be made available under the same license terms as the
original. See http://www.gnu.org/philosophy/ and http://opensource.org. While the differences and
similarities of the movements are interesting, this paper focuses on development practices in
distributed work and those are largely shared across the movements. We therefore choose the
acronym FLOSS, standing for Free/Libre and Open Source Software.

to other areasÓ and for Òa concerted effort on open source in itself, for itselfÓ (Ghosh, 2002). But
to be able to learn from teams that are working well, we need to have a definition of Òworking
wellÓ.

Outline of paper

This search for appropriate FLOSS success measures presented in this paper proceeds
according to the follow outline. In the first half of the paper, we develop a richer
conceptualization of success measures for FLOSS drawing on a number of sources. We first
review the literature on IS success to see what measures might be adopted and to identify
problems in applying others to the context of FLOSS development. We then step back and
discuss the process model underlying the existing IS models and extend these models to fit the
FLOSS context. We do so with reference to a model of group effectiveness derived from
Hackman (1987). We next assess the face validity of our conceptual scheme using the opinions
of FLOSS developers elicited through SlashDot, a popular Web-based discussion board
(http://slashdot.org/). The comparison suggests additional measures that might be incorporated to
develop a fuller understanding of FLOSS project success that we integrate into our conceptual
scheme of success in FLOSS development. Finally, we examine recent research papers on
FLOSS to see what measures of success have been used in practice, and comment on their
appropriateness and utility. The result of this conceptual development work is a set of possible
measures of FLOSS development effectiveness and related operationalizations.

In order to examine the practicality and validity of this conceptual scheme, in the second
half of our paper we present an empirical study that demonstrates its operationalization and
assesses the internal validity of the measures. For this purpose, we use data from SourceForge,
the largest hub for FLOSS development projects. Finally we conclude by discussing the
implications of this study for our proposed extension of IS success in the context of FLOSS
development and highlight future directions for research.

Theory development: Measuring the success of FLOSS development

In this section, we describe the process through which we developed a conceptual model
of success measures for FLOSS development. We discuss in turn our review of models of
success in the IS literature, extensions to existing conceptual models, feedback from FLOSS
developers and review of measure of success applied in the empirical FLOSS literature.

Literature review: Conceptual models of information system success

FLOSS is a form of system development, so we begin our hunt for success measures in
the Information Systems (IS) literature. Note though that we are not attempting an exhaustive
review of this extensive literature, but rather are using the conceptual models presented in the
literature to identify success measures relevant to FLOSS. The most commonly cited model for
IS success is DeLone and McLean (1992; 2002; 2003), shown in Figure 1. This model suggests 6
interrelated measures of success: system quality, information quality, use, user satisfaction,
individual impact and organizational impact. Seddon (1997) proposed a related model that
includes system quality, information quality, perceived usefulness, user satisfaction, and IS use.

Taken together, these models suggest a number of possible measures that could be applied to
FLOSS.

System and information quality

Code quality has been studied extensively in software engineering. This literature
provides many possible measures of the quality of software including understandability,
completeness, conciseness, portability, consistency, maintainability, testability, usability,
reliability, structuredness and efficiency (Boehm et al., 1976; Gorton & Liu, 2002). ISO standard
9126 defines software quality as including functionality, reliability, usability, efficiency,
maintainability and portability, each with subdimensions. A commonly used measure of quality
is the number of defects per thousand lines of code (Diaz & Sligo, 1997; Goranson, 1997) or the
probability of a fault in a module (Basili et al., 1994). To this list should be added the quality of
the system documentation. Code quality measures would seem to be particularly practical for
studies of FLOSS, since the code is publicly available. Indeed, a few studies have already
examined this dimension. For example, Stamelos et al. (2002) suggested that FLOSS code is
generally of good quality. Mishra, Prasad & Raghunathan (2002) offer an analytic model that
suggests factors contributing to FLOSS code quality, such as number of developers, mix of talent
level, etc. On the other hand, not many FLOSS systems include information (ie data) per se, so
the dimension of information quality seems to be less applicable.

User satisfaction

User satisfaction is an often-used measure of system success. For example, it is common
to ask stakeholders if they felt a project was a success (e.g., Guinan et al., 1998). There is some
data available regarding user satisfaction with FLOSS projects. For example, Freshmeat, a Web-
based system that tracks releases of FLOSS (http://freshmeat.net/), collects user ratings of
projects. Unfortunately, these ratings are based on a non-random sample (i.e., users who take the
time to volunteer a rating), making their representativeness suspect. Furthermore, we have
observed that the scores seem to have low variance: in a recent sample of 59 projects, we found
that scores ranged only from 7.47 to 9.07 out of 10. It seems likely that users who do not like a
piece of software simply do not bother to enter ratings. There do not seem to be any easily
obtainable data on the related measures of perceived ease of use and usefulness (Davis, 1989).

Opinions expressed on project mailing lists are a potential source of qualitative data on these
facets, though again there would be questions about the representativeness of the data.

In principle, it should be possible to survey users to collect their satisfaction with or
perceptions of the software. However, to do so properly poses a serious methodological problem.
Because most FLOSS projects are freely distributed through multiple channels, the population of
users is unknown, making it impossible to create a true random sample of users. In this respect,
FLOSS differs greatly from information systems developed in an organizational setting or for the
commercial market that have a clearly defined user population. The situation is also different
than for the Web, another non-traditional systems environment, because with a Web site users
are by definition the ones who visit the site, making the population effectively self-identifying.
To achieve the same effect for FLOSS, the best solution might be to build the survey into the
software, though doing so might annoy some users. For example, recent versions of the Mozilla
Web browser include a program that offers to report crashes and collect other feedback.

Use

Although there is some debate about its appropriateness (DeLone & McLean, 2003;
Seddon, 1997), many studies employ system use as an indication of information systems success.
For software for which use is voluntary, as is the case for most FLOSS, use seems like a
potentially relevant indicator of the projectÕs success. Some interesting data are available. For
rare projects, these numbers can be directly measured. For example, Netcraft conducts a survey
of Web server deployment3, which estimate the market share of different web servers. Other
projects that require some kind of network connection could potentially be measured in the same
way (e.g., instant messaging or peer-to-peer file sharing clients), but this approach does not seem
to be widely applicable. Avery PennarunÕs Debian Popularity Contest4 collects statistics on the
usage of software on Linux machines running the Debian distribution. Users install a program
that collects and reports usage information daily and the resulting statistics show that packages
have been installed, and which of these have been recently used. Unfortunately, these data are
collected from a non-random sample of machines, running a particular Linux distribution, so the
results are likely not representative of use in the broader population.

Rather than measuring actual use, it may be sufficient to count the actual or potential
number of users of the software, which we label ÒpopularityÓ (Stewart & Ammeter, 2002). A
simple measure of popularity, and a highly popular one in the FLOSS literature reviewed below,
is the number of downloads made of a project. These numbers are readily available from various
sites. Of course, not all downloads result in use, so variance in the conversion ratio will make
downloads an unreliable indicator of use. Furthermore, because FLOSS can be distributed
through multiple outlets, on-line as well as offline (e.g., on CDs), the count from any single
source is likely to be quite unreliable as a measure of total users. A particularly important
channel is ÒdistributionsÓ such as RedHat, SuSE or Debian. Distributions provide purchasers
with pre-selected bundles of software packaged for easy installation and are often sold on a CD-
ROM to obviate the need to download everything. Indeed, the most popular software might be
downloaded only rarely because it is already installed on most usersÕ machines and stable

3 http://news.netcraft.com/archives/webserver_survey.html
4 http://people.debian.org/~apenwarr/popcon/

enough to not require the download of regular updates. Therefore, an important measure of
popularity to consider is the packageÕs inclusion in distributions.

Other sources of data reflecting on users are available. Freshmeat provides a popularity
measure for packages it tracks, though a better name might be ÒinterestÓ, as it is one step further
removed from actual use. The measure is calculated as the geometric mean of subscriptions and
two counts of page viewings of project information5 Similarly, SourceForge provides
information on the number of page views of the information pages for projects it supports.

Finally, it may be informative to measure use from perspectives other than that of an end
user. In particular, the openness of FLOSS means that other projects can build on top of it.
Therefore, one measure of a projectÕs success may be that many other projects use it. Package
dependency information between projects can be obtained from the package descriptions
available through the various distributionsÕ package management systems. Analysis of source
code could reveal the reuse of code from project to project (though identifying the true origin of
the code could be difficult).

Individual or organizational impacts

The final measures in DeLone and McLeanÕs (1992) model are individual and
organizational impacts for the users. Though there is considerable interest in the economic
implications of FLOSS, these measures are hard to define for regular I/S projects and doubly
hard for FLOSS projects, because of the problems defining the intended user base and expected
outcomes. Therefore, these measures are likely to be unusable for most studies of individual
FLOSS projects.

Summary

To summarize, existing models of information systems success suggest a range of
potential success measures for FLOSS projects as shown in Table 1. However, a number of the
measures are inapplicable, while others are difficult to apply in the FLOSS environment. We
note that many of these measures are based on a vision of system development in an organization
and do not take into account the unique characteristics of the FLOSS development environment.
A deeper understand of the differences between the process model underlying the IS success
literature and the process of FLOSS development is needed.

5 http://freshmeat.net/faq/view/30/

Table 1. Success measures suggested by the IS literature review.

Measure of Success Indicators Audience

System and information

quality
Code quality (e.g., understandability,
completeness, conciseness, portability,
consistency, maintainability, testability,
usability, reliability, structuredness,
efficiency)
Documentation quality

Users, developers

User satisfaction User ratings
Opinions on mailing lists
User surveys

Users, developers

Use Use (e.g., Debian Popularity Contest)
Number of users
Downloads
Inclusion in distributions
Popularity or views of information page
Package dependencies
Reuse of code

Developers

Individual and

organizational impacts
Economic and other implications Users, developers

Reconsidering Process: The process of FLOSS development

The previous section considered how success has been measured in the IS literature and
its applicability to FLOSS development. In this section, we extend these models by reexamining
the vision of systems development underlying DeLone and McLeanÕs success model to identify
additional measures that might be used for FLOSS project success. DeLone and McLean
explicitly state that their model of project success was built by considering Òa process model
[that] has just three components: the creation of a system, the use of the system, and the
consequences of this system useÓ (DeLone & McLean, 2002), which we have shown graphically
in Figure 2. We note that the measures included in the model focus on the use and consequences
of the system (the right side of the figure), and do not open up either box in the process. While
this focus may be appropriate given the traditional concern of information systems research with
the organizational implication of IS, it seems to unduly restrict the range of measures considered.

System
creation

System
use

Consequences

Organizational setting

Figure 2. Process model underlying the DeLone & McLean (1992) model of success.

The choice of measures also seems to be influenced by the relative ease of access to the
use environment compared to the development environment for packaged or commercial
software. In the context of FLOSS though, researchers are frequently faced with the opposite
situation, in that many aspects of the development process are publicly visible while the use
environment is difficult to study or even identify. For both reasons, we believe that it will be
useful to complement previously identified IS success measures with ones that take advantage of
the availability of data on the development process. As a structure for analyzing the systems
development process, we draw on HackmanÕs (1987) model of effectiveness of work teams. An
attractive feature of this model is that effectiveness is conceptualized along multiple dimensions.
In addition to task output, Hackman includes the teamÕs continued capability to work together
and satisfaction of individual team membersÕ personal needs as relevant outputs. The following
discussion examines such measures of success.

Measures of the output of systems development

Two of the measures in the DeLone and McLeanÕs model concern the product of the
systems development process, namely systems quality and information quality. We first consider
possible additional measures of this process step in the FLOSS context.

Project completion. First, given the large number of abandoned projects (Ewusi-Mensah,
1997), simply completing a project may be a sign of success. However, it is much more common
for FLOSS projects to be continually in development, making it difficult to say when they are
completed. Faced with this problem, Crowston & Scozzi (2002) instead measured success as the
progress of a project from alpha to beta to stable status, as self-reported by the team. For
example, for many teams the 1.0 release is a significant milestone.

Second, another commonly used measure of success is whether the project achieved its
goals. This assessment is typically made by a comparison of the project outcomes with the
formal requirements specifications. However, FLOSS projects often do not have such
specifications. Scacchi (2002) examined the process of Òrequirements engineeringÓ in open
source projects and provided a comparison with the traditional processes (e.g., Davis, 1990;
Jackson, 1995). He argues that rather than a formal process, FLOSS requirements are developed
through what he terms Òsoftware informalismsÓ, which do not result in agreed Òrequirements
documentationÓ that could later be analyzed to see whether the project has met its goals.
ScacchiÕs ethnography further suggests that for FLOSS, goals will likely come from within the
project through a discursive process centered on the developers. Therefore, a key measure for

FLOSS may be simply developer satisfaction with the project, which corresponds to HackmanÕs
(1987) individual satisfaction dimension. Developer satisfaction could be measured by surveying
developers: the developer community is much more clearly delineated than users, making such a
survey feasible. Indeed, there have already been several FLOSS developer surveys (e.g., Ghosh,
2002; Hertel et al., 2004), though not on this topic specifically. Since in many projects there is a
great disparity in the contribution of developers-a few developers contribute the bulk of the code
(Mockus et al., 2000) it may be desirable to weight developersÕ opinions in forming an overall
assessment of a project.

Measures of the process of systems development

In DeLone and McLeanÕs (1992) process model, systems development is implicitly
treated as a one-off event. However, for FLOSS projects (and indeed many other types of
projects) development is instead an ongoing activity, as the project continues to release Òoften
and earlyÓ (Raymond, 1998). In other words, a FLOSS project is often characterized by a
continuing process of developers fixing bugs, adding features and releasing new versions of the
software. This characteristic of the FLOSS development process suggests a number of possible
indicators of success.

Number of developers. First, since many FLOSS projects are dependent on volunteer
developers, the ability of a project to attract and retain developers on an on-going basis is
important for its success. Thus the number of developers involved in a project could be an
indicator of success. The number of developers can be measured in at least two ways. First,
FLOSS development systems such as SourceForge list developers who are formally associated
with each project, a measure that could also be discovered through examination of CVS logs for
projects where developers contribute code directly (ie not via a patch submission process).
Second, examination of the mailing lists and other fora associated with projects can reveal the
number of individuals who actively participate in development activities without being formally
associated with the project.

Level of activity. More important than the sheer number of developers is their
contribution to a project. Thus the level of activity of developers in submitting code and bug
reports may be useful as an indicator of project success. For example, SourceForge computes and
reports a measure of project activity based on the activities of developers. Researchers could also
examine development logs for evidence of software being written and released.

Cycle time. Another measure related to the group activity is time between releases. In
FLOSS development, there is a strong community norm to Òrelease early and release oftenÓ,
which implies that an active release cycle is a sign of a healthy development process and project.
For example, FreshMeat provides a Òvitality scoreÓ (Stewart & Ammeter, 2002) that assesses
how recently a project has made an announcement of progress on the FreshMeat site6. In
addition, detailed examination of bug-fixing and feature-request fulfillment activities might yield
useful process data indicative of the projectÕs status. These processes involve interaction with the
user community and can involve applying patches of contributed code supplied by non-core
developers. Bug reports and feature-requests are typically managed through a task-management

6 http://freshmeat.net/faq/view/27/

system that records the developer and community discussion, permits labeling of priority items
and sometimes includes informal Òvoting mechanismsÓ to allow the community to express its
level of interest in a bug or new feature. The time to close bugs (or implement requested
features) and the proportion of bugs fixed therefore might be helpful measures of the strength of
a projectÕs processes and thus indirectly of its success.

Effects on project teams

Finally, because the projects are on-going, it seems important to consider the impact of a
project on the abilities of the project team itself and its ability to continue or improve the
development process. This dimension corresponds to the HackmanÕs (1987) dimension of the
teamÕs continued capability to work together. As Shenhar et al. put it, Òhow does the current
project help prepare the organization for future challenges?Ó (Shenhar et al., 2001).

Employment opportunities. Some literature on the motivation of FLOSS developers
suggests that developers participate to improve their employment opportunities (e.g., Lerner &
Tirole, 2000). Thus, one can consider salary or jobs acquired through the involvement in a
particular project as possible measures of success (Hann et al., 2004). For example, Hann et al.
(2002) found that higher status within the Apache Project was associated with significantly
higher wages. Again, one might measure these indicators by surveying developers. While for a
single developer, these measure are confounded with innate talent, training, luck, etc.,
aggregating across many developers and across time may provide a useful project-level measure
of success.

Individual reputation. Similarly, literature also suggests that developers participating in
FLOSS projects are rewarded with reputation in the community, and that this reputation is a
sufficient reward for interaction. Kelty (2001) suggests that reputation might be measured
through an analysis of credits located in source code (which he terms ÒgreputationÓ). Alternative
measures of FLOSS reputation might include the FLOSS communitiesÕ implementation of a
ÒWeb of TrustÓ at the community site Advogato7 where developer status is conferred through
peer-review. Analyses of this kind of measure face the difficulty of tying the earning of
reputation to the success of a particular project and systems that have incomplete participation.

Knowledge creation. Projects can also lead to creation of new knowledge for individuals
as well as on the group level (Arent & N¿rbjerg, 2000). Through their participation in a project,
individual developers may acquire new procedural and programming skills that would benefit
them on future projects. This effect could be measured by surveying the developers for their
perceived learning. In addition, following GrantÕs (1996) knowledge-based view of the firm, one
can consider the project as a structure to integrate membersÕ knowledge into products. In this
view, the projectÕs rules, procedures, norms and existing products are a reflection of knowledge
being created by the project activities. This knowledge creation can be measured by observing
and qualitatively analyzing changes in the written rules and procedures over time and may be
reflected and transferred through the development of systems for FLOSS project support, such as
SourceForge and Savannah. Analysis of the development of interactions and support systems
closely linked to a project might give some insight into this aspect of project success.

7 http://www.advogato.org/trust-metric.html

Summary of measures from process reconsideration

Table 2. Measures suggested by a reexamination of the FLOSS process.

Measure of Success Indicators Audience

Project output Movement from alpha to beta to stable
Achieved identified goals
Developer satisfaction

Developers

Process
Number of developers
Level of activity (developer and user
contributions, number of releases)
Time between releases
Time to close bugs or implement features

Developers, users

Outcomes for project

members

Individual job opportunities and salary
Individual reputation
Knowledge creation

Developers

In summary, consideration of the process of developing FLOSS suggests a number of
additional measures indicative of success for these projects. These measures are summarized in
Table 2. We note that as the measures move further back in the process model, they become
increasingly removed from the user. As such, there may be a concern about their validity as
measures of success: is it a success if a project attracts developers but not users? Or if it develops
high quality processes but not high quality code? We have two replies to this concern. First, the
apparent disconnect may be an accurate representation of the reality of FLOSS projects, in which
the developers frequently are the users. Second, the measures developed in this section should be
viewed as complements to rather than replacements for the more conventional measures of
success. Using a variety of measures will provide a richer picture of the status of a project. As
well, because many of the individual measures seem likely to have measurement problems, or
measure success from different perspectives, adopting a portfolio of measures seems prudent.

Seeking input from FLOSS developers

Having reviewed the IS literature on IS success and extended this conceptual model by
considering the unique features of the FLOSS development and use environment, we continued
our theory building by turning to the open source community for input on their definitions of
success. Our goal was to extend our conceptual model by generating a range of ideas to compare
and extend of our list of factors, rather than the relative importance of each one or the relations
among them.

To solicit input, we posted a question soliciting feedback on SlashDot8 a Web-based
discussion group that attracts considerable interest and participation from FLOSS developers and
users. This data elicitation technique was more like an on-line focus group (or perhaps the initial
stage of a Delphi study) than a survey, as respondents were a non-random sample, and could see
and respond to earlier postings. This approach was chosen to match our goal of generating ideas
about success measures, rather than testing a theory or making inferences from generalizable

8 http://slashdot.org/

data. To elicit comments, the following question was posted on SlashDot on 22 April 2003
(http://slashdot.org/article.pl?sid=03/04/21/239212):

There have been a number of discussions on Slashdot and elsewhere about how good
projects work (e.g., Talk To a Successful Free Software Project Leader), but less about
how to tell if things are going well in the fi rst place. While this may seem obvious, most
traditional definitions of software project success seem inapplicable (e.g., profi t) or
nearly impossible to measure for most projects (e.g., market share, user satisfaction,
organizational impact). In an organizational setting, developers can get feedback from
their customers, the marketplace, managers, etc.; if youÕre Apache, you can look at
NetcraftÕs survey of server usage; but what can the rest do? Is it enough that youÕre happy
with the code? I suspect that the release-early-and-often philosophy plays an important
role here. IÕm asking not to pick winners and losers (i.e., NOT a ranking of projects), but
to understand what developers look at to know when things are going well and when
theyÕre not.

The question received 201 responses within a few days. A transcript of responses was
downloaded on 26 April, 2003. Many of the individuals posting answers to our question
identified themselves as developers or contributors to FLOSS projects. As a check on their
qualifications, we searched SourceForge for information about the posters. Although
SourceForge and SlashDot are separate sites, many developers have strong attachments to their
user IDs and use the same one whenever possible, providing a possible link between the two
systems. For example, it seems reasonable to expect that the user ID Abcd1234 identifies the
same individual on both systems. We identified the SlashDot IDs of 72 posters who provided
useful responses (some responses were anonymous). Of these 72, 34 IDs matched a SourceForge
ID exactly, and 6 could be matched with a bit of research (e.g., by matching the real name of the
individual; real names are available for a few SlashDot posters and many SourceForge
developers). Of the matched IDs, 16 and 3 respectively were listed as members of SourceForge
projects (i.e., about half). A few other posters had pointers to non-SourceForge FLOSS projects
on their SlashDot information page or information about their employment, generally as software
developers. These data are not conclusive, but do suggest that a number of the contributors to the
study had sufficient background as FLOSS developers to be able to comment knowledgeably.

The transcript was content analyzed by two coders. The content analysis process was
carried out using Atlas-ti, a qualitative data analysis software package. Messages were coded
using the thematic unit as the unit of analysis. Once a measure was identified within a message,
the coder selected the text containing the measure and coded that text using categories from our
coding scheme. A total of 170 thematic units were identified and coded in 91 responses (i.e.,
some postings contained multiple units; the remaining responses did not contain text addressing
the question, e.g., a posting containing an advertisement). The content analysis process employed
a mixture of deductive and inductive procedures. The initial content analytic scheme was based
on the literature review described above. During the process of content analysis, additional
themes emerged from the data. Data analysis continued until saturation was reached. The two
raters agreed on the codes for 78% of the units. We felt that this level of agreement was
sufficient for the purposes of the analysis (identification of measures to compare to the literature
review), so we did not go on to refine the definitions of codes or retrain the coders to increase
agreement. The results of the content analysis are summarized in Table 3.

Table 3. Results of the content analysis of SlashDot responses.

Level 1 Level 2 Frequency Percentage

Satisfaction 14 8% User

Involvement 25 15%
Meets requirements 9 5%

Code quality 11 6%

Portability 1 1%

Product

Availability 2 1%

Activity 5 3%

Adherence to process 10 6%

Bug fixing 4 2%

Time 2 1%

Process

Age 1 1%

Involvement 16 9%
Varied developers 2 1%
Satisfaction 29 17%

Developers

Enjoyment 8 5%

Competition 4 2%

Number of users 2 1%

Use

Downloads 3 2%

Referral 3 2%

Attention and recognition 9 5%

Recognition

Spin offs 6 4%

Influence 4 2%
 Total 170

The codes were organized into a two-level hierarchy for presentation, with detailed codes
(level 2 in the table) clustered into meta-categories (level 1). 32% of the units included elements
from the developers meta-category, indicating that the respondents felt that a project is
successful if the developers are involved, satisfied, enjoyed the process and that there is a variety
of them. The Users meta-category also had a large number of responses. 23% of units indicated
that the poster felt a project was successful if it satisfies users (other than developers) and that
users are involved in discussions and bug reports. Involvement of both users and developers was
frequently mentioned, accounting for 31% of the units. Project recognition codes were found in
11% of the units, exceeding the number of responses indicating use as a measure of success,
which accounted for 5% of instances. Finally, the productÕs quality (13%) and process (13%)
were suggested to be measures of success by developers as well. Note that percentages are
reported only to more completely describe the data. Given the non-random sample of

contributors and the open data elicitation technique, the frequency of a response should not be
interpreted as importance.

Overall, the responses of the developers posting on SlashDot were in general agreement
with the list of success measures we developed from the literature and our reexamination of the
process. The analysis indicates that developers found their personal involvement, satisfaction and
enjoyment to be measures the success of a project, consistent with the view of FLOSS as
Òsoftware that scratches an itchÓ. However, some new themes did emerge from the coding.

¥ First, a number of respondents suggested recognition (e.g., mention on other sites), as a
measure of project success. This measure could be operationalized by searching the Web
for the project name (for projects with unique names) or for the URL of the projectÕs
home page. A related suggested measure was the influence of the product or projectÕs
process on other FLOSS groups and other commercial settings. These responses are
consistent with the literature on FLOSS developersÕ motivations that suggest recognition
as a primary motivation for involvement.

¥ A second category that emerged was the level of involvement of the users as indicated by
involvement of the users in submitting bug reports and participating in the project
mailing lists. We had considered contributions from developers, but these responses
emphasize the fact that FLOSS projects are also dependent on help from users to identify
problems and post suggestions.

¥ A final category that emerged from the data was the issue of porting. Developers consider
porting of a product to different systems (especially to Windows), and requests for such
ports as a measure of the success of the product. This theme might be considered a
special case of popularity.

What was also surprising was what respondents did not say, in that no respondents
mentioned some of the measures of success we had identified. For example, though several
authors have suggested that developers are motivated by the chance to learn and perhaps get a
better job, none of the respondents mentioned these factors. A possible explanation is a strong
community norm on SlashDot that endorses altruism over expressions of self-interest, which
may have restricted discussion in the non-anonymous and community-moderated forum.

Success measures in recent FLOSS research

In the previous sections, we developed a list of possible success measures for FLOSS
projects based on a review of the IS literature, with extensions based on a consideration of the
FLOSS development process and feedback from FLOSS developers. In this section, we examine
the current state of academic research on FLOSS. To understand how success has been
operationalized in recent FLOSS research, we carried out a content analysis of the working
papers posted on the http://opensource.mit.edu/ pre-press website. As of 1 March 2005, the site
included 182 recent working papers and abstracts, thus presenting a convenient cross section of
the literature. We chose to use this source for several reasons: the abstracts for the papers were
all on one page, making it much easier to collect them (vs. doing manual searches across
multiple journal websites), the papers were recent, having not been delayed by the publication

cycle, and the papers presented a broad cross section of FLOSS research, while journal
publications likely have some selection based on the interests of the journal.

Four people coded the papers on the site for type of paper (empirical vs. conceptual) and
for use of project success as a dependent variable (if any). The papers were divided into 3 groups
for initial coding by 3 of the coders, and the empirical papers were then recoded by a fourth
coder to ensure comparability in the coding. Of the 182 papers, 84 were deemed to be empirical
studies. Of these only 14 were identified as studying success, performance or effectiveness of
project teams in some manner. Table 4 shows the specific concepts and measures we found with
citations to the associated papers.

Table 4. Success measures in recent FLOSS research.

Type Measure Operationalization Example citations

System Creation Activity/effort

Sourceforge activity level (Crowston et al., 2004)
(Crowston & Scozzi, 2002)

 Time invested per week by
administrators

(Stewart & Gosain, 2004)

 Time spent in discussion (Butler et al., 2002)
 Number of message posts on

Sourceforge
(Krishnamurthy, 2002)

 Size of development
team

Number registered as developers on
Sourceforge

(Krishnamurthy, 2002;
Stewart & Gosain, 2004)

 Number checking code into CVS (Mockus et al., 2000; Reis
& Fortes, 2002)

 Number of posters on mailing lists (Mockus et al., 2000)
 Number of posters in bug tracker (Crowston et al., 2004)
 Programmer

productivity
Lines of code per programmer per year (Mockus et al., 2000)

 Project development
state

Active or not on Sourceforge (Giuri et al., 2004)

 Development stage on Sourceforge (Crowston & Scozzi, 2002)
(Krishnamurthy, 2002;
Stewart & Gosain, 2004)

 Task completion Speed in closing bugs or tracker items (Mockus et al., 2000)
(Stewart & Gosain, 2004)
(Crowston et al., 2004)

 Development of stable
processes

Description of development processes (Reis & Fortes, 2002)

System Quality Modularity Modularity of source code (Shaikh & Cornford, 2003)
 Correctness Defects per lines of code/deltas (Mockus et al., 2000)
 Manageability Lines of Code under package

management
(Gonz‡lez-Barahona &
Robles, 2003)

 Maintainability Common coupling (Schach et al., 2003a)
(Schach et al., 2003b)

System Use Interest Sourceforge page views (Krishnamurthy, 2002;
Stewart & Gosain, 2004)
(Crowston et al., 2004)

 Copies in circulation Sourceforge downloads (Krishnamurthy, 2002;
Stewart & Gosain, 2004)
(Crowston et al., 2004)

 Market share Netcraft survey (Mockus et al., 2000)
 Support effectiveness Number of questions effectively

answered
(Lakhani & Wolf, 2003)

 Time spent seeking help/providing (Lakhani & Wolf, 2003)

help
System
Consequences

Learning by Developers Motivations of developers for reading
and answering questions

(Lakhani & Wolf, 2003)

 Tool development Description of tools (Reis & Fortes, 2002)

There are two striking features of this table. Firstly there is a wide range of alternative
measures of project success; the field has not settled on any one measure, or systematic group of
measures. Secondly, there are a great many measures related to the process of system creation
itself, especially if one includes Ôlearning by developersÕ as an outcome measure internal to the
team. This is pleasingly consistent with reconsideration of IS success models in the FLOSS
context presented above which pointed to the early stages of systems development as particularly
important to an understanding of IS success in the FLOSS context.

Summary of conceptual scheme for FLOSS success

Table 5 presents a summary of the success measures, and possible operationalizations
that we have discussed above. Using our re-consideration of the FLOSS process as its
framework, the table draws together the insights from the review of the IS literature, our
extension of these models in light of the FLOSS process, input from FLOSS developers via
Slashdot and our analysis of the existing literature studying FLOSS.

Table 5: Summary of concepts for Information Systems success in FLOSS context

Process Phase Measure Potential Indicators

System creation
and maintenance

Activity/Effort File releases, CVS check-ins, mailing list discussions,
tracker discussions, surveys of time invested.

 Attraction and retention of
developers (Developer
satisfaction)

Size, growth and tenure of development team through
examination of registration, CVS logs. Posts to dev
mailing lists and trackers. Skill coverage of
development team. Surveys of satisfaction and
enjoyment.

 Advancement of project
status

Release numbers or alpha, beta, mature self-
assessment, request for enhancements implemented,

 Task completion Time to fi x bugs, implementing requests, meeting
requirements (eg J2EE specifi cation). Time between
releases.

 Programmer productivity Lines of code per programmer, surveys of
programmer effort.

 Development of stable
processes and their
adoption

Documentation and discussion of processes,
rendering of processes into collaborative tools,
naming of processes, adoption by other
projects/endeavors.

System quality Code quality Code analysis metrics from software engineering.
(Modularity, Correctness, Coupling, Complexity.)

 Manageability Time to productivity of new developers, amount of
code abandonment.

 Documentation quality Use of documentation, user studies and surveys.
System use User Satisfaction User ratings, Opinions on mailing lists, User surveys
 Number of Users Surveys (eg Debian Popularity contest), downloads,

inclusion in distributions, , package dependencies,
reuse of code.

 Interest Site pageviews, Porting of code to other platforms,
Development of competing products or spin-offs.

 Support effectiveness Number of questions effectively answered, time
required to assist newbies.

System
consequences

Economic implications Implementation studies, eg total cost of ownership ,
case studies of enablement.

 Knowledge Creation Documentation of processes, creation of tools.
 Learning by developers Surveys and Learning episode studies.
 Future income and

opportunities for
participants

Longitudinal Surveys

 Removal of competitors Open sourcing (or substantial feature improvement)
of competing proprietary applications.

Empirical study of success measures using Sourceforge data

The previous section of this paper developed a conceptual model of success factors based
on the literature and theoretical considerations and compared these to developer opinions and the
current state of the empirical FLOSS research. In this section, we continue our examination of
success measures using data from Sourceforge. This study demonstrates the operationalization of
three of the measures we suggest above and allows us to assess their internal validity. Following
our report of this study we consider its implications for our theory building and suggest future
avenues of research.

From the measures developed above, we chose the number of developers (assessed from
the records of the project and from bug fixing logs), bug-fixing time, and popularity (assessed
from the number of downloads and viewings of project Web pages, and inclusion in
distributions). These measures were chosen because they span the reconsidered FLOSS
development process discussed above, including inputs (number of developers), process (speed
of bug fixing) and output (popularity).

Our analysis aims at assessing the utility of these measures for future research. Each has
good face validity, in the sense that a project that attracts developers, fixes bugs quickly and
which is popular does seem like it deserves to be described as a success. We are also interested
in assessing how these measures relate to one another: do they measure the same construct or are
they measuring different aspects of a multidimensional success construct? And most importantly,
what insight do they provide into the nature of the development processes in the different
projects?

Method

In order to assess the utility of these measures, we first developed operationalizations for
each measure based on data available on the Sourceforge website. We then collected data from
the system, using web spiders to download the html pages and parsing out the relevant fields.

With the data in hand we processed each individual measure, achieving results which we present
below. We then examined the measuresÕ relationships using a correlation matrix (with
Bonferonni corrections for multiple correlations) to see if these measures measure the same or
different things.

Operationalization

Inputs: Developer counts. We operationalized the number of developers involved in a
project in two ways. First, we extracted the developer count from the SourceForge project
summary pages. Alternative operationalizations considered included analyzing the CVS logs to
count the developers contributing, but this method assumes that all projects allow all developers
direct access to the CVS (rather than using a patch submission system) and, more
problematically, that only those contributing code to CVS should be counted as developers.
Therefore, we used the projectÕs own definitions of developers. The counts on the Sourceforge
summary page are self-reported data but since being listed as a developer there involves both an
application and approval by a project administrator, it provides a useful measure of developer
involvement. In order to assess how well projects were doing in attracting and retaining
developers, we analyzed the change in developer counts over time. A project that has a growing
number of developers is more successful in attracting developers than one that has a shrinking
number. These changes were analyzed both as categorized time series and using a weighted delta
more appropriate for our intended correlation study.

Second, since the FLOSS development process relies on contributions from active users
as well as core developers, we wanted a measure that reflected the size of this extended team,
rather than just the core developers. As a proxy for the size of the extended development
community, we counted the number of individuals who posted a bug report or message to the
SourceForge bug tracker. Alternative operationalizations of this would include counting posters
on the various mailing lists, including development lists and user-support lists. Analyzing instead
the bug tracker was practically convenient (as we were already collecting that data) but
participation there also demonstrates closer involvement in the project than just posting user
questions to the mailing list, as well as being a venue where direct interaction between users and
developers would be found.

Process: Speed of bug fixing. We operationalized team performance in speed of bug
fixing by turning to the bug tracker provided to Sourceforge projects. We examined how long it
took the program to fix bugs by calculating the lifespan of each bug from report to close using
the opened and closed timestamps recorded by the bug tracker. The most straightforward
analysis would be to calculate each projectÕs average bug-fixing time. However, this approach
has several problems. First, the time taken to fix bugs is highly skewed (most bugs are closed
quickly, but a small number take much longer), making an average unrepresentative. Second and
more problematically, because not all bugs were closed at the time of our study, we do not
always know the actual lifespan, but only a lower bound. This type of data is described as
ÒcensoredÓ data. Simply leaving out these unclosed bugs could bias the estimated time to fix
bugs. Finally, analyzing only the average does not take into account available bug-level data. If
there are differences between projects in the types of bugs reported (e.g., in their severity), then
these differences could affect the average lifespan for a project. In the analysis section below we

describe how we approached these difficulties using the statistical approach known as survival or
event history analysis.

Outputs: Popularity. Our final measure, popularity, was assessed in three ways. First, we
extracted the number of downloads and project page views reported on the SourceForge project
pages.9 Because some projects were older than others, we operationalized this aspect of
popularity as downloads and page views per day. In keeping with a portfolio approach to success
measurement, we also measured popularity by examining whether the project produced programs
that were included in the Debian Linux distribution, the largest distribution of FLOSS. Debian is
distributed as a base installation and a set of additional packages for different programs. Not all
the programs produced by FLOSS projects are candidates for inclusion in a Linux distribution
(for example, some projects are written only for the Windows or Mac OS X platform), so this
measurement was only taken for projects producing programs eligible for inclusion in the
distribution.

Data collection

To gather data about the projects, we developed a spider to download and parse
SourceForge project pages. Spidering was necessary because the SourceForge databases were
not publicly available10. Data were collected at multiple points to allow for a longitudinal
analysis. We collected data in February 2001 and April 2002. We also obtained data from
Chawla et al. for October 2003 (Chawla et al., 2003) and from Megan Conklin for October 2004
and February 2005 (Conklin, 2004). These data have been collated and made available via the
FLOSSmole project (http://ossmole.sourceforge.net/, Howison et al., 2005). The use of data
from multiple points in times provides a dynamic view of the projects lacking in most analyses
of FLOSS projects.

At the time we started our study, SourceForge supported more than 50,000 FLOSS
projects on a wide diversity of topics (the number was 78,003 as of 21 March 2004 and 96,397
projects and more than 1 million registered users by 28 February 2005). Clearly not all of these
projects would be suitable for our study: many are inactive, previous studies have suggested that
many are in fact individual projects rather than the distributed team efforts we are studying
(Krishnamurthy, 2002), and some do not make bug reports available. While we were able to
assess these difficulties at the time of our original project selection, the FLOSSmole data spans
five years and covers all of the projects on the site over that period and so we illustrate our next
point with that more complete data. With respect to our first measure, developers listed on
Sourceforge homepages, our data confirmed the impression gained from previous research: of

9 The SourceForge website at the time of data collection noted that ÒDownload statistics shown on this

page for recent dates may be inaccurateÓ, but our examination of the data suggests a systematic
underreporting, rather than a bias in favor of one project or another. As a result, while the absolute
numbers may be wrong, the data are suffi cient to indicate relative performance of projects and the
relationships of these data to other variables.

10 In the period between our research and this publication a limited amount of Sourceforge data became
available directly from database dumps provided to researchers via a group based at Notre Dame
(http://www.nd.edu/~oss/Data/data.html). It is our understanding that this data source does not
include tracker or mailing list information, but certainly if the conditions are acceptable to researchers
and the data adequate this appears to be an excellent source of clean data.

the 98,502 projects that we examined in the SourceForge system up to February 2005, 64,881
(67%) had never had more than one developer registered to the project at any time in the five
years, as shown in Figure 2.

Figure 2. Maximum number of listed developers per project on Sourceforge projects

over the five year period from 2001 to 2005.

It was also clear that not all projects used the Bug tracking system sufficiently to allow
the calculation of community size, nor speed of bug fixing. In order to collect useful data for
these measures we restricted our study to projects that listed more than 7 developers and had
more than 100 bugs in the project bug tracker at the time of selection in April 2002. This
restriction was justified theoretically as well as practically: Having multiple developers suggests
that the project is in fact a team effort. Having bug reports was a necessary prerequisite for the
planned analysis, as well as indicative of a certain level of development effort. Quite
surprisingly, we identified only 140 projects that met both criteria. The sample includes the
projects curl , fink , gaim , gimp - print , ht dig , jedit , lesstif , netatalk ,
phpmyadmin , openrpg , squirrelmail and tcl (a complete list is included in the
Appendix). Those familiar with FLOSS will recognize some of these projects, which span a wide
range of topics and programming languages.

Figure 3. Example bug report and followup messages11

To study the performance of bug fixing, we collected data from the SourceForge bug
tracking system, which enables users to report bugs and to discuss them with developers. As
shown in Figure 3, a bug report includes a description of a bug that can be followed up with a
trail of correspondence. Basic data for each bug includes the date and time it was reported, the
reporter, priority and, for closed bugs, the date and time it was closed. To collect this data, we
developed a spider program that downloaded and parsed all bug report pages for the selected
projects. The spider was run in March 2003. Unfortunately, between selection of projects and
data collection, some projects restricted access to bug reports, so we were able to collect data for
only 122 projects.

Once obtained and parsed we conducted a basic exploration of the data for the purposes
of data cleaning, which revealed problems with the quality of the data for some of the projects.
For example, one team had apparently consolidated bug reports from another bug tracking
system into the SourceForge tracker. These copied-over bugs all appeared in SourceForge to

11 adapted from http://SourceForge.net/tracker/index.php?func=

detail&aid=206585&group_id=332&atid=100332

have been opened and closed within minutes, so this project was eliminated from further
analysis. Another project was eliminated because all of the bug reports were in Russian, making
the data impossible for us to interpret (and apparently for others as well: only 3 posters had
participated, despite 9 developers being registered to the project). As a result, the sample for the
remainder of the analysis was reduced to 120 projects. We also deleted a few bug reports where
the computed lifespan was 0 seconds or less due to errors in the data or in the parsing. We
obtained data on a total of 56,641 bug reports, an average of 472 per project. The median number
of reports was 274, indicating a skewed distribution of bug report counts.

Analysis

In this section we present the analyses we performed for each of our measures, deferring
the results for a unified presentation below.

Popularity. Of our two measures of popularity, number of developers and community
size, community size required little detailed analysis. We simply counted the unique number of
posters to the bug trackers on Sourceforge, dropping only the systemÕs indicator for anonymous
posting.

The analysis of developer numbers was more involved because, as mentioned above, a
unique feature of our data on developer numbers is that we had data over time, which allows us
to assess how the number of developers in a project changes over time, and we wanted to take
advantage of that. However, since we had only five data points, measured at inconsistent time
intervals, it was impossible to apply standard time series analysis techniques. We therefore
simply grouped projects into six categories based on how the number of developers had changed
over timeÑ whether it had risen, fallen or stayed the same, and how consistently it had done so.12
The precise definitions of the six categories is presented in Table 6. Figure 4 shows the series
allowing a visual inspection to assess the reasonableness of the categorizations.

Table 6. Definitions of categories of pattern of change in developer counts.

Category Description

1. Consistent Risers
No falls, Rising: a pattern of consecutive
rises at least half as long as the whole
series was found*

2. Risers Mostly Rising but with at least one fall.
3. Steady or not treading Unchanged or neither rising nor falling

4. Fallers
At most one rise but mostly Falling: a
pattern of consecutive falls at least half as
long as the whole series was found*

5. Consistent Fallers Always Falling, no rises at all.
6. Dead Projects Project removed from SourceForge

* A rise (or fall) followed by no change was counted as two consecutive rises (or
falls)

12 We have made the code for this categorization available via the FLOSSmole project.

Figure 4. Changes in developer counts per project over time, categorized by trend. (log

scale, note that the vertical axis is inconsistent with lower total numbers in e and f)

A visual inspection of the diagrams suggests that the grouping of the patterns is
reasonable. Figure 4a shows the trend for the high number of projects in our sample that have
continually attracted developers. Figure 4b shows the trend for projects that tend to grow but
which have, at times, fallen. Figure 4c shows unchanged or projects that move up and down
without a trend. Not all the projects in this category were started at the time of our first data
collection, so further data collection may reveal a trend and facilitate sorting into one of the other
categories. Figure 4d shows projects that have fallen for at least half of their life spans and risen
in only one period. Interestingly the rise is almost always early in the life of the project, followed
by a sustained decline. These projects appear to have attracted some initial interest but were
unsuccessful in retaining developers. This may indicate troubles in the teams despite an
interesting task. Figure 4e shows projects that have never grown and have lost members for at
least 2 consecutive periods. Finally, Figure 4f shows projects for which data became unavailable.
These are dissolved projects are ones that have been removed from SourceForge. The results of
comparing these categorizations with the whole Sourceforge population are presented below, in
the discussion section, allowing us to interpret our results in the full context.

While the developer series categorization was useful, it was not suitable for the
correlation study of the proposed success measures. For that purpose, we computed a weighted
average of the changes from period to period, using as weights the inverse of the age (1/1 for the
change from 2004 to 2005, ! for the change from 2003 to 2004, etc.). This procedure was
adopted based on the theory that the ability to attract and retain developers is an indicator of
success and to focus attention on the growth (or decline) in developers and to give more weight
to recent experience. This weighted average figure is reported below.

Community Size The poster of bug reports and related messages are identified by a
SourceForge ID (though postings can be anonymous), making it possible to count the number of
distinct IDs appearing for each project. We counted a total of 14,922 unique IDs, of whom 1,280
were involved in more than one project (one was involved in 8 of the projects in our sample).
The total counts per project were log transformed to correct skew, which is justified as it is the
result of a growth process.

Bug-fixing time. As discussed above the analysis of bug fixing speed is complicated by
the right-censored data available. Analysis of censored lifespan data involves a statistical
approach known as survival or event history analysis. The basic idea is to calculate from the life
spans a hazard function, which is the instantaneous probability of a bug being fixed at any point
during its life or equivalently the survival function, which is the percentage of bugs remaining
open. A plot of the survival over time for all bugs in our sample is shown in Figure 5. The plot
shows that bugs with higher priorities are generally fixed more quickly, as expected, but some
bugs remain unfixed even after years.

Figure 5. Plot of bug survival vs. time for high (9), default (5) and low (1) priority bugs.

The hazard function (or more usually the log of the hazard function) can be used as a
dependent variable in a regression. For our initial purpose of developing a project-level measure
of bug fixing effectiveness, we simply entered project as a factor in the hazard regression along
with the bug priority, allowing us to compute a hazard ratio for each project (ratio because of the
use of the log of the hazard). The hazard ratios are the regression weights for the dummy variable
for each project in the hazard function, using the first project as the baseline. The analysis was
performed using the R-Project statistical system (http://www.r-project.org/), specifically the psm
function from the Survival and Design packages. We experimented with different functional
forms for fitting the bug hazard rates. Somewhat surprisingly, the form that fitted best was an
exponential (the R2 for the fit was 0.51), that is, one in which the hazard rate is not time varying.
Therefore the hazard ratio for each project is reported below.

Popularity. The measures of project downloads and page views that had been extracted
from the downloaded html pages were relatively simply to analyze. We log transformed the raw
values to correct skew.

Our additional measure of popularity, inclusion in a distribution, required additional
analysis. We first examined the list of Debian packages manually to match packages to the
projects in our SourceForge sample. To do this for each project we examined the output of the
Debian apt - cache program, which searches package names and descriptions and the
http://packages.debian.org/ site, which allows searching filenames within package contents. We
then examined the SourceForge homepages of the projects to be sure that we had an accurate
match. For those that were included we observed that one project was linked to one or more
(sometimes many more) packages, but we did not observe many projects that were packaged
together. As discussed above, some of the projects in our sample are not candidates for inclusion
in the Debian distribution because they do not run on Linux were not included in this measure.
For example, fink is a package-management system for Mac OS X and Gnucleous is a
Windows client for the Gnutella network. We found that there were 110 packages (out of 120, or

92%) that could be installed and run on a Debian Linux system and 63 (57%) of these were
packaged and distributed by Debian, while 47 (43%) were not. One package was undergoing the
Debian quality assurance process but was not yet available through the standard installation
system and was therefore coded as not included. Projects with eligible programs that were
included in Debian were given a score of 1 (or YES), and projects without included programs
were given a score of 0 (or NO), ineligible projects were tagged with NA.

Results

The results of measuring these success measures across our sample of 120 projects are
presented below. First we present descriptive statistics for the individual measures and then
present the results of examining the correlations between the measures. We conclude our results
discussion by reporting on the practicality of our operationalizations. Table 7 shows the
descriptive statistics for the individual measures.

Table 7. Descriptive statistics for sample success measures.

Variable Mean Median SD

Lifespan (days)a 1673 1699 198
Developers in 2001 8.63 7 7.20
Developers in 2002 15.56 12 11.22
Developers in 2003 18.19 12 16.29
Developers in 2004 20.06 14 19.95
Developers in 2005 20.22 14 20.57
Weighted delta (see text)a 1.60 0.72 3.26
Posters to bug trackera 140 86 207
Log bugsa 5.78 5.61 0.84
Closed bugsa 405 234 489
Log median bug lifetimea 14.44 14.39 1.29
Hazard ratioa 1.13 1.10 1.04
Log downloads (all time)b 11.29 11.87 3.38
Log downloads (per day)b 4.32 4.44 2.24
Log page views (all time)b 13.85 14.15 2.14
Log page views (per day)b 6.45 6.74 2.12
Debian package? 63 Yes 47 No 10 NA

a N=120 b N=118

To examine the relationships among the variables we measured, we examined the
correlations, given in Table 8 and 9. 42 of the 136 correlations are statistically significant
indicating that there is a genuine relationship. (With 120 cases and applying the Bonferonni
correction for the 136 comparisons possible among 17 variables, the critical value for
significance at p=0.05 is r=0.32.) None of the proposed success measures are correlated with
project lifespan, suggesting that they do provide some indication of the performance of the
project rather than just accumulation of events.

Table 8. Correlations among sample success measures.

 L
ife

sp
an

D
ev

el
op

er
s i

n
20

01

D
ev

el
op

er
s i

n
20

02

D
ev

el
op

er
s i

n
20

03

D
ev

el
op

er
s i

n
20

04

D
ev

el
op

er
s i

n
20

05

W
ei

gh
te

d
de

lta

Lifespan 1.000
Developers in 2001 0.265 1.000
Developers in 2002 0.061 0.627 1.000
Developers in 2003 Ð0.016 0.648 0.761 1.000
Developers in 2004 Ð0.047 0.656 0.643 0.949 1.000
Developers in 2005 Ð0.042 0.658 0.643 0.943 0.998 1.000
Weighted delta Ð0.023 0.374 0.352 0.789 0.913 0.922 1.000
Posters to bug tracker 0.052 0.144 0.266 0.200 0.226 0.230 0.186
Log bugs 0.008 0.158 0.396 0.392 0.398 0.394 0.316
Closed bugs 0.034 0.191 0.381 0.322 0.344 0.348 0.272
Log median bug lifetime 0.087 0.166 0.103 0.208 0.190 0.184 0.172
Hazard ratio 0.200 0.219 0.084 0.177 0.158 0.147 0.134
Log downloads (all time) 0.136 0.056 0.198 0.212 0.241 0.238 0.240
Log downloads (per day) 0.010 0.059 0.228 0.249 0.295 0.287 0.283
Log page views (all time) 0.001 0.043 0.228 0.245 0.277 0.279 0.269
Log page views (per day) Ð0.060 0.035 0.224 0.245 0.280 0.282 0.271
Debian package? 0.285 0.153 0.116 0.101 0.064 0.054 0.054

Bold and underlined correlations are significant at p<0.05, using a Bonferonni correction for the
number of correlations.

Table 9. Correlations among sample success measures, continued.

 P
os

te
rs

 to
 b

ug

tr
ac

ke
r

L
og

 b
ug

s

C
lo

se
d

bu
gs

L
og

 m
ed

ia
n

bu
g

lif
et

im
e

H
az

ar
d

ra
tio

L
og

 d
ow

nl
oa

ds

(a
ll

tim
e)

L
og

 d
ow

nl
oa

ds

(p
er

 d
ay

)

L
og

 p
ag

e
vi

ew
s

(a
ll

tim
e)

L
og

 p
ag

e
vi

ew
s

(p
er

 d
ay

)

Posters to bug tracker 1.000
Log bugs 0.592 1.000
Closed bugs 0.801 0.718 1.000
Log median bug lifetime 0.179 0.087 0.232 1.000
Hazard ratio 0.158 0.114 0.239 0.868 1.000
Log downloads (all time) 0.359 0.268 0.252 0.095 0.068 1.000
Log downloads (per day) 0.450 0.343 0.312 0.088 0.017 0.909 1.000
Log page views (all time) 0.435 0.462 0.355 0.031 0.146 0.660 0.724 1.000
Log page views (per day) 0.433 0.463 0.354 0.038 0.160 0.647 0.722 0.998 1.000
Debian package? 0.125 0.073 0.088 0.063 0.115 0.201 0.240 0.171 0.150

The counts of number of developers at different points in time are correlated (the upper
box in Table 8), as would be expected given that they constitute a time series. The counts are

also correlated with the computed weighted average of changes in developers. Interestingly, the
developer counts are also correlated to number of bugs reported (the lower box in Table 8). It
may be that developers themselves post bug reports and so more developers constitutes more
activity. Alternately, it may be that activity attracts developers. As well, the count of participants
in the bug tracker is correlated with number of bugs, but not with number of listed developers
(the upper left box in Table 9). These relationships suggest that individuals post only a few bug
reports, so more bug reports implies a greater number of participants. The correlation between
posters and the number of closed bugs is particularly strong (r=0.718).

The counts of downloads and page views (all time and daily) are all strongly correlated
(the lower right box in Table 9), suggesting that they offer similar measures of popularity. They
are also correlated with the number of bugs (the lower left box in Table 7b), and the count of
participants in the bug tracker. These correlations taken together suggest that the count of
participants and number of bugs function more like indications of the popularity of a FLOSS
project, rather than the success of its development processes. On the other hand, the hazard ratio
for bug lifetimes and the median bug lifetime are not significantly correlated with any of the
other variables, suggesting that they do provide an independent view of a projectÕs performance.

Discussion

The study provided useful data for reflecting on the conceptual model for success in
FLOSS development developed in the first half of this paper. Because many of these findings
reveal themselves as limitations in our study, we first discuss these and attempt to distil general
advice for FLOSS research using success as a variable.

The measures applied in this paper have good face validity as indicators. The analysis
presented above allows us to extend our examination of the validity and utility of the measures.
The high correlation among many of these measures indicates a degree of convergent validity,
since the different measures do correlate, particularly number of developers and popularity.

Examining these correlations and correlations with other variables in more detail suggests
room for improvement in the measures. Clearly additional data could be collected to increase the
accuracy of the developer counts. Furthermore our counts are merely aggregate measures that
may mask many developers leaving and joining a project. These more specific counts would
enable us to determine if some projects are subject to significant ÔchurnÕ of individual
developers, or conversely of the ÔtenureÕ of individuals as developers on projects. Such a
measure might be a theoretically more valuable, as it would have implications for development
and retention of knowledge. As with our analysis of bug lifetime, such analyses would need to
employ event history statistics to account for the right-censored data.

Further possibilities for measuring developer participation exist which may provide more
accurate and valuable measures. Such opportunities include measuring participation in mailing
lists and developerÕs involvement in code writing directly by examining logs from the CVS
system. Each of these measures, however, suffers from the difficulty of inferring departure and
ÔtenureÕ because it is possible to ÔlurkÕ in each of these forums. For example, if a developer is
observed to post once in 2003 and again in 2005, was the developer always a part of the project,

or did the developer leave and re-join? It might be worth developing a measure of consistent
engagement but it would need to account for different patterns for different individuals.

Another instructive limitation is that in building a sample of projects to study, we seem to
have found projects that seem to be mostly successful, by and large. This can be seen in a
comparison of the categorization of developer count series from our sample and from the whole
Sourceforge population. We divided the population of SourceForge projects into the same six
categories. Figure 6 shows a comparison of the distribution of time series into our categories
between our sample and the total SourceForge population. We required three periods of data
collection to calculate the category, so the full population includes only 39,414 projects,
excluding 59,154 projects that are either too new or already dead before our fourth measurement
point. The comparison shows that our sample of 120 projects has a higher proportion of constant
risers and a lower proportion of fallers and dead projects. The difference in the distributions is
highly significant (! 2 = 805, df=5, p<0.001). This result suggests that our sample, projects with
at least 7 developers and 100 bugs in April 2002, is comparatively successful, at least in terms of
attracting and retaining developers over time.

Figure 6. Changes in developer counts per project over time, categorized by trend.

As a result of this tendency in our data, the sample may not have sufficient variance on
success, affecting the observed correlations reported above. To address this concern, FLOSS
research should be aware that selecting on the basis of team size and process features, such as
use of the Sourceforge trackers, risks selecting only successful projects and should therefore
make a special effort to collect data on a broader range of projects, including some that seem
clearly to be unsuccessful. This advice is true for quantitative research but is also relevant to case
study research; there is a real need for detailed research on failed FLOSS projects.

A secondly instructive limitation is that we followed the standard but inadequate practice
of using popularity measures unadjusted for potential Ômarket sizeÕ. A projectÕs downloads are

capped by their total potential downloads, their Ôpotential marketÕ. A consumer-oriented
application, such as an instant messaging client, is of potential usefulness to almost all internet
users, whereas a program to model subatomic particle collision (for example), has a much lower
potential market. While the instant messaging program might achieve only 40% of its potential
market its absolute number will be far higher than the number achieved by the particle collision
modeling tool, even if it is used and adored by 95% of high energy physicists. Thus download
figures without market share data are useful only if one considers all programs to be in
competition with each other, i.e. ignores the projectÕs aims entirely. Some value can be salvaged
by using relative growth figures instead of the absolute numbers. Within limited domains of
projects it is possible to create categories of truly competing products for which the absolute and
relative download numbers ought to be a useable proxy for software use. Unfortunately the self-
classification of products on sites like Sourceforge (where ÔEnd-user softwareÕ is an entire
category) is of little use and identification of competitors must be by hand.

Furthermore our analysis revealed that measures such as community size (in numbers of
posters) are more similar to these popularity measures than to the process measures. On
reflection community size should also be expected to be heavily influenced by the potential size
of the user population, much more so than the smaller developer numbers. A brief inspection of
our data on bug posters affirms this: the projects with the largest number of posters are consumer
desktop applications, such as gaim . Community size measures, therefore, should be adjusted in
the same way as downloads and pageviews: by either using within-project changes or by
manually creating categories for competing projects.

This discussion draws attention to an element missing from our theory development
above and from FLOSS research in general. The phenomenon under research, FLOSS and its
development, is generally, often implicitly, defined as any projects that use an Ôopen source
licenseÕ (usually defined as OSI approved licenses). Our selection of projects from Sourceforge
also implicitly uses this definition of the phenomenon; Sourceforge only allows projects using
these licenses to register with the site. The risk here is that there are a wide range of Information
Systems types, developer goals, software development processes, management styles and group
structures all of which are compatible with using an OSI approved license. It is not yet clear
upon what characteristics the phenomenon should be divided but it is clear that the meaning of
success for different types of projects, programs, motivations and processes will be quite
different.

This observation is similar to that made by Seddon et al (1999), who introduce the ÒIS
Effectiveness MatrixÓ. They suggest that two key dimensions on which to base success measures
are Òthe type of system studiedÓ and Òthe stakeholder in whose interests the system is being
evaluatedÓ. FLOSS development typically occurs outside the corporate environments in which
stakeholders are explicit and are dominated by the financial results of the IS development.
However, this does not mean that there are not stakeholders, such as core developers, peripheral
developers, corporate users, individual users, and other whole projects that depend on the project
whose success one is trying to measure. The theory presented in this paper intentionally provides
a much greater emphasis on the inputs and the process of IS system development, and thus the
developers, than traditional IS models of success, and so studies utilizing success in the FLOSS
context should closely consider both the phenomenon they are interested in (and thus relevant
projects) and from which perspective they need to measure success, given their research

interests. The development of a taxonomy of research interests and the identifications of the
portions of the FLOSS universe appropriate for their study would be a useful task for future
research.

Conclusion

This paper makes a contribution to the developing body of empirical research on FLOSS
by identifying and operationalizing success measures that might be applied to FLOSS. We
developed and presented a theoretically informed range of measures which we think are
appropriate for measuring the success of FLOSS projects and we hope that these will be useful to
researchers in the developing body of empirical research on FLOSS development. We
complemented this theory development through an empirical study that demonstrated methods
and challenges in operationalizing success measures using data obtained from Sourceforge and
made available to the community. This study demonstrated the portfolio approach to success
measurement by taking measures from throughout the FLOSS development process and by using
longitudinal data. The study allowed us to identify and communicate the limitations of our
theory development and to elaborate areas that require particular care for researchers in this area.

We emphasize again that we do not view any single measure as the final word on
success. As the measures draw on different aspects of the development process, they offer
different perspectives on the process. Including multiple measures in a portfolio and careful
consideration which measures are most appropriate for the researcherÕs current research question
should provide a better assessment of the effectiveness of each project.

While FLOSS is important Ôfor its own sakeÕ it is also a form of Information systems
development growing in importance. There is substantial interest in learning from FLOSS but
such learning can only proceed when there is a firm understanding of the phenomenon, and
understanding when it is working well is a crucial first step. Our future work includes more
detailed analysis of both effective and ineffective projects. We plan to employ a theoretical
sampling strategy based on a portfolio of relevant success measures to choose a few FLOSS
development teams to study in depth, using both quantitative and qualitative research methods.
By limiting the number of projects, we will be able to use more labor-intensive data analysis
approaches to shed more light on the practices of effective FLOSS teams.

References

Arent, J., & N¿rbjerg, J. (2000). Software Process Improvement as Organizational Knowledge

Creation: A Multiple Case Analysis. Paper presented at the Proceedings of the 33rd
Hawaii International Conference on System Sciences.

Basili, V. R., Caldiera, G., & Rombach, H. D. (1994). Goal question metric paradigm. In J. J.
Marciniak (Ed.), Encyclopedia of Software Engineering (Vol. 1, pp. 528Ð532). New
York: John Wiley.

Boehm, B. W., Brown, J. R., & Lipow, M. (1976). Quantitative evaluation of software quality. In
Proceedings of the 2nd International Conference on Software Engineering, October 13-

15 (pp. 592Ð605). San Francisco, CA.

Butler, B., Sproull, L., Kiesler, S., & Kraut, R. (2002). Community effort in online groups: Who
does the work and why? In S. Weisband & L. Atwater (Eds.), Leadership at a Distance.
Mahwah, NJ: Lawrence Erlbaum.

Chawla, S., Arunasalam, B., & Davis, J. (2003). Mining Open Source Software (OSS) Data
using Association Rules Network. In Proceedings of the 7th Pacific Asia Conference on

Knowledge Discovery and Data Mining (PACDD) (pp. 461-466).

Conklin, M. (2004). Do the Rich Get Richer?: The Impact of Power Laws on Open Source

Development Projects. Paper presented at the Proceedings of Open Source 2004
(OSCON).

Crowston, K., Annabi, H., Howison, J., & Masango, C. (2004). Effective work practices for

Software Engineering: Free/Libre Open Source Software Development. Paper presented
at the WISER Workshop on Interdisciplinary Software Engineering Research, SIGSOFT
2004/FSE-12 Conference,, Newport Beach, CA.

Crowston, K., & Scozzi, B. (2002). Open source software projects as virtual organizations:
Competency rallying for software development. IEE Proceedings Software, 149(1), 3Ð17.

Davis, A. M. (1990). Software Requirements Analysis and Specification. Englewood Cliffs, NJ:
Prentice-Hall.

Davis, F. D. (1989). Perceived usefulness, perceived ease of use and user acceptance of
information technology. MIS Quarterly, 13, 319Ð340.

DeLone, W. H., & McLean, E. R. (1992). Information Systems Success: The Quest for the
Dependent Variable. Information Systems Research, 3(1), 60Ð95.

DeLone, W. H., & McLean, E. R. (2002). Information systems success revisited. Paper presented
at the Proceedings of the 35th Hawaii International Conference on System Sciences.

DeLone, W. H., & McLean, E. R. (2003). The DeLone and McLean model of information
systems success: a ten-year update. J. Manage. Inform. Syst., 19(4), 9-30.

Diaz, M., & Sligo, J. (1997). How software process improvement helped Motorola. IEEE

Software, 14(5), 75Ð81.

Ewusi-Mensah, K. (1997). Critical issues in abandoned information systems development
projects. Communication of the ACM, 40(9), 74Ð80.

Ghosh, R. A. (2002). Free/Libre and Open Source Software: Survey and Study. Report of the
FLOSS Workshop on Advancing the Research Agenda on Free / Open Source Software.
from http://www.infonomics.nl/FLOSS/report/workshopreport.htm

Giuri, P., Ploner, M., Rullani, F., & Torrisi, S. (2004). Skills and openness of OSS projects:

Implications for performance (Working paper). Pisa, Italy: Laboratory of Economics and
Management, Sant'Anna School of Advanced Studies.

Gonz‡lez-Barahona, J. M., & Robles, G. (2003). Free Software Engineering: A Field to Explore.
Upgrade, 4(4), 49Ð54.

Goranson, H. T. (1997). Design for Agility Using Process Complexity Measures. Agility &

Global Competition, 1(3), 1Ð9.

Gorton, I., & Liu, A. (2002). Software component quality assessment in practice: Successes and
practical impediments. In Proceedings of the 24th International Conference on Software

Engineering (pp. 555Ð558). Orlando, FL.

Grant, R. M. (1996). Toward a knowledge-based theory of the firm. Strategic Management

Journal, 17(Winter), 109Ð122.

Guinan, P. J., Cooprider, J. G., & Faraj, S. (1998). Enabling software development team
performance during requirements definition: A behavioral versus technical approach. Inf.

Syst. Res., 9(2), 101-125.

Hackman, J. R. (1987). The design of work teams. In J. W. Lorsch (Ed.), The Handbook of

Organizational Behavior (pp. 315Ð342). Englewood Cliffs, NJ: Prentice-Hall.

Hann, I.-H., Roberts, J., Slaughter, S., & Fielding, R. (2002). Economic incentives for
participating in open source software projects. In Proceedings of the Twenty-Third

International Conference on Information Systems (pp. 365Ð372).

Hann, I.-H., Roberts, J., & Slaughter, S. A. (2004). Why developers participate in open source

software projects: An empirical investigation. Paper presented at the Twenty-Fifth
International Conference on Information Systems, Washington, DC.

Hertel, G., Konradt, U., & Orlikowski, B. (2004). Managing distance by interdependence: Goal
setting, task interdependence, and team-based rewards in virtual teams. European

Journal of Work & Organizational Psychology, 13(1), 1-28.

Howison, J., Conklin, M. S., & Crowston, K. (2005, 11Ð14 July). OSSmole: A collaborative

repository for FLOSS research data and analyses. Paper presented at the 1st International
Conference on Open Source Software, Genova, Italy.

Jackson, M. (1995). Software Requirements and Specifications: Practice, Principles, and

Prejudices. Boston, MA: Addison-Wesley.

Kelty, C. (2001). Free Software/Free Science. First Monday, 6(12).

Krishnamurthy, S. (2002). Cave or Community? An Empirical Examination of 100 Mature Open

Source Projects. Bothell, WA: University of Washington, Bothell.

Lakhani, K. R., & Wolf, B. (2003). Why Hackers Do What They Do: Understanding Motivation
and Effort in Free/Open Source Software Projects. Retrieved 1 March, 2005, from
http://opensource.mit.edu/papers/lakhaniwolf.pdf

Lerner, J., & Tirole, J. (2000). The Simple Economics of Open Source (No. NBER Working
Paper w7600): The National Bureau of Economic Research, Inc.

Mishra, B., Prasad, A., & Raghunathan, S. (2002). Quality and profits under open source versus
closed source. In Proceedings of the Twenty-Third International Conference on

Information Systems (pp. 349Ð363).

Mockus, A., Fielding, R. T., & Herbsleb, J. D. (2000). A case study of Open Source Software

development: The Apache server. Paper presented at the Proceedings of the International
Conference on Software Engineering (ICSEÕ2000).

Rai, A., Lang, S. S., & Welker, R. B. (2002). Assessing the validity of IS success models: An
empirical test and theoretical analysis. Information Systems Research, 13(1), 50Ð69.

Raymond, E. S. (1998). The cathedral and the bazaar. First Monday, 3(3).

Reis, C. R., & Fortes, R. P. d. M. (2002). An Overview of the Software Engineering Process and
Tools in the Mozilla Project. Retrieved 1 March, 2005, from
http://opensource.mit.edu/papers/reismozilla.pdf

Scacchi, W. (2002). Understanding the requirements for developing Open Source Software
systems. IEE Proceedings Software, 149(1), 24Ð39.

Schach, S. R., Jin, B., Heller, G. Z., & Offutt, A. J. (2003a). Determining the Distribution of
Maintenance Categories: Survey versus Empirical Study. Retrieved 14 Dec, 2003, from
http://www.vuse.vanderbilt.edu/%7Esrs/preprints/lst.preprint.pdf

Schach, S. R., Jin, B., Wright, D. R., Heller, G. Z., & Offutt, A. J. (2003b). Maintainability of the
Linux Kernel. Retrieved 14 Dec, 2003, from
http://www.vuse.vanderbilt.edu/%7Esrs/preprints/linux.longitudinal.preprint.pdf

Seddon, P. B. (1997). A Respecification and Extension of the DeLone and McLean model of IS
Success. Information Systems Research, 8(3), 240-253.

Seddon, P. B., Staples, S., Patnayakuni, R., & Bowtell, M. (1999). Dimensions of information
systems success. Communications of the Association for Information Systems, 2(20), 61
pages.

Shaikh, M., & Cornford, T. (2003). Version Management Tools: CVS to BK in the Linux
Kernel. Retrieved 1 March, 2005, from
http://opensource.mit.edu/papers/shaikhcornford.pdf

Shenhar, A. J., Dvir, D., Levy, O., & Maltz, A. C. (2001). Project success: A multidimensional
strategic concept. Long Range Planning, 34, 699Ð725.

Stamelos, I., Angelis, L., Oikonomou, A., & Bleris, G. L. (2002). Code quality analysis in open
source software development. Information Systems Journal, 12(1), 43Ð60.

Stewart, K. J., & Ammeter, T. (2002). An exploratory study of factors influencing the level of

vitality and popularity of open source projects. Paper presented at the Proceedings of the
Twenty-Third International Conference on Information Systems.

Stewart, K. J., & Gosain, S. (2004). The Impact of Ideology on Effectiveness in Open Source
Software Development Teams. Retrieved 1 March, 2005, from
http://opensource.mit.edu/papers/stewartgosain.pdf

