Information Systems Success in Free and Open Source Software
Development: Theory and Measures'

Kevin Crowston*, James Howison* and Hala Annabi+

*Syracuse University School of Information Studies
4-206 Centre for Science and Technology
Syracuse, NY 132444100USA

+University of Washington, The Information School
Box 352840
Suite 370Mary Gates Hall
Seattle, WA 981952840USA

crowston@syr.edu, jhowison@syr.edu, hpannabi@u.washington.edu

Phone +1 3154431676,Fax: +1 8662657407

Pre-print of publication scheduled for early 2006 please cite as.

Crowston, K., Howison, J., and Annabi, H. (in press). Information systems success in free
and open source software development: Theory and measures. Software Process:
Improvement and Practice (Special 1ssue on Free/Open Source Software Processes.)

! This research was partially supported by NSF Grants 03-41475 and 04-14468. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation. The authors thank Chengetai Masango, Kangning Wel, Y dliz Eseryel and Qing Li for their
contributions to the paper. Earlier versions of this paper appeared as:

Crowston, K., Annabi, H., & Howison, J. (2003). Defining open source software project success. In Proceedings of the 24th
International Conference on Information Systems (ICIS 2003). Seattle, WA.

Crowston, K., Annabi, H., Howison, J., & Masango, C. (2004). Towards a portfolio of FLOSS project success measures.
Paper presented at the Workshop on Open Source Software Engineering, 26th International Conference on Software
Engineering, Edinburgh.

Information Systems Success in Free and Open Source Software
Development: Theory and Measures

Abstract

Information systems success is oneof themos widdy used dependent variablesin
information systems (1S) research, butresearch on Free/Libre and Open Source software
(FLOSS) often fails to appropriately conceptudize this important conaept. In this pgoer, we
reconsde what success means within a FLOSS context. We first review existing modds of IS
success and success variables used in FLOSS research and assess them for ther ussfulness,
practicality and fit to the FLOSS context. Then, drawing on atheoretical modd of group
effectivenessin the FLOSS development process, as well as an online discussion groupwith
developa's, we present additiond concepts tha are central to an appropriate undestanding of
success for FLOSS.

In order to examinethe practicality and validity of this conaeptud scheme, the second
hdf of our pgoe presents an empirical study tha demonstrates its opaationdization of the
chosen measures and assesses thar internd validity. We use datafrom SourceForgeto measure
the project@® effectivenessin team building, the speed of the project at responding to bugrepoits
and the project@ popukrity. We condudeby discussing theimplicationsof this study for our
proposd extenson of 1S successin the context of FLOSS development and highlight future
directionsfor research.

Keywords: Free/libre open source software, information systems success, concept development,
survival analysis

Information Systems Success in Free and Open Source Software
Development: Theory and Measures

Thelongterm god of our research isto identify processes tha enable distributed
software team performance, specifically, the peformance of Free/Libre Open Source Software
(FLOSS) development teams. In this pgper, we take a needed step in this direction by developing
measures for the success of FLOSS projects. This step is needed because we will notbe ableto
improve software processes if we cannotidentify wha conditutes an improvement. Information
systems (1S) success is oneof themos widdy used dependent variables in information systems
research. Not surprisingly, much attention has been given to how best to measure it (e.g.,
DeLone& McLean, 1992,2002,2003;Rai et al., 2002;Seddon,1997;Seddonet al., 1999)
However, the uniquenaure of FLOSS development makes some measures more appropriate
than others and requires the addition of hitherto unconsdered measures.

FLOSS is abroad term used to embrace software that is developed and released unde
either a Gree softwareOor an pen sourceOlicense. Both Open Source and Free Software are
freein two senses. Oree asin speechQ meaning that the codemay beredistributed and reused in
other FLOSS projects, and Qree as in beerQ meaning tha the software is available for download
withoutcharge’. Aswell, many (thoughby no meansall) FLOSS developa's contribute to
projects as volunteers withoutworking for acommon organization or beng pad. Aswe will
discuss, these two characteristics have implicationsfor the applicability of certain measures of
SUCCESS.

It isimportant to develop measures of success for FLOSS projects for at least two
reasons First, having such measures will be useful for FLOSS project leadersin assessing ther
projects. In some cases, FL OSS projects are sponred by third parties, so measures are useful
for spon®rsto undestand thereturn onthdr investment. Second,FLOSS is an increasingly
visible and copied modeof systems development. Millionsof users, induding major
corporations depend on FLOSS systems such as Linux (and, of course, thelnternet, whichis
heavily dependent on FLOSS tools), but as Scacchi (20023 notes, Qittle is known abouthow
people in these communities coordinae software development across different settings or about
wha software processes, work practices, and organizationd contexts are necessary to ther
successQ An EU/NSF workshopon priorities for FLOSS research identified the need both for
learning Grom open source modes of organization and produdion that could perhgpsbeapplied

2 The freesoftwaremovemert and the open source movemert are distinct but share importart

characteristics. The licersesthey use allow users to obtain ard distribute the softwareOsriginal
source without charge (softwareis Ofeeasin beetO)and to inspect, modify and redstribute
modificaions to the source code. While the open source movemert views these freecoms
pragndically (asa Oévelopmert metodologyD)the Free Software movemert ‘emphaszesthe
mearing of Greeasin speechOwhichis capturedby the FrenchVSpanish ° libreOand one of their
methods of supporting those freecbmsis Gropyleft,Ofamously embodiedin the General Public
Licerse, meaning that derivative works must be macke availab e underthe samelicerse termsasthe
original. See http://www.gnu.org/philosophy/ ard http://opensource org. While the differencesard
similaritiesof the movemerts are intereding, this paper focuseson developmert practicesin
distributedwork and those are largely sharedacross the movemerts. We therdore choose the
acramym FLOSS standing for FreeLibre and Open Source Sditware.

to other areasOand for Ga concerted effort on open sourcein itself, for itself O(Ghosh, 2002) But
to be able to learn from teams tha are working well, we need to have adefinition of Qvorking
wellO

Outline of paper

This search for appropriate FL OSS success measures presented in this pgoer proceeds
accordingto thefollow outline In thefirst hdf of the pgper, we develop aricher
conceptudization of success measures for FLOSS drawing on anunber of sources. Wefirst
review theliterature on|S success to see wha measures might be adopted and to identify
problems in applying others to the context of FL OSS development. We then step back and
discuss the process modd undelying the existing IS modds and extend these modds to fit the
FLOSS context. We do so with reference to amodel of group effectiveness derived from
Hackman (1987) We next assess theface validity of our conaeptud scheme usng the opinions
of FLOSS developes dlicited throughSlashDot, apopular Web-based discussion boad
(http://dashdotorg/). The comparison suggests additiond measures tha mightbeincorporated to
develop afuller undestanding of FL OSS project success tha we integrate into our conceptud
scheme of successin FLOSS development. Findly, we examinerecent research pgpers on
FLOSS to see wha measures of success have been used in practice, and comment on thar
appropriateness and utility. Theresult of this conceptud development work is a set of possible
measures of FLOSS development effectiveness and related opeaationdizations

In order to examinethe practicality and validity of this conaeptud scheme, in the second
hdf of our paper we present an empirica study tha demondrates its opeationdization and
assesses theinternd validity of the measures. For this purmpos, we use daafrom SourceForge,
thelargest hubfor FLOSS development projects. Findly we condudeby discussing the
implicationsof this study for our proposd extenson of 1S successin the context of FLOSS
development and highlight future directionsfor research.

Theory development: Measuring the success of FLOSS development

In this section, we describe the process throughwhich we developed a conceptud modd
of success measures for FLOSS development. We discussin turn our review of modds of
success in thelS literature, extengonsto existing conceptua modds, feedback from FLOSS
developeas and review of measure of success applied in theempirical FLOSS literature,

Literature review: Conceptual models of information system success

FLOSSisaform of system development, so we begin our hurt for success measuresin
the Information Systems (1S) literature. Note thowgh tha we are not attempting an exhaugive
review of this extengve literature, butrather are usngthe concgptud modds presented in the
literature to identify success measures relevant to FLOSS. Themog commonly cited modd for
IS successis Deloneand McLean (1992;2002;2003), shown in Figure 1. This modd suggests 6
interrelated measures of success: system quality, information qudity, use, user satisfaction,
individud impact and organizationd impact. Seddon (1997)proposd arelated modd tha
indudes system qudity, information qudlity, perceived ussfulness, user satisfaction, and IS use.

Taken togeher, these modds suggest a nunmber of possible measures that could be applied to
FLOSS.

System
Quality Use
Individual Organizational
Impact Impact
Information User
Quality Satisfaction

Figure 1. DeLone and McLean's Model of |S Success
[Delone and Mclean [1992], Figure 2, p 87]

System and information qudity

Codequdity has been studied extensvely in software engineering. This literature
provides many possible measures of the qudity of software induding undestandability,
completeness, conaseness, portability, congstency, maintainability, testability, usability,
reliability, structuredness and efficiency (Boehmet al., 1976;Gorton & Liu, 2002) SO standad
9126defines software qudity asinduding fundiondity, reliability, usability, efficiency,
maintainability and portability, each with subdimensons A commonly used measure of qudity
isthenumbe of defects per thousnd lines of code(Diaz & Sligo, 1997;Goranson, 1997 or the
probability of afault inamodule (Basili et al., 199). To thislist should be added the qudity of
the system doaumentation. Codequdity measures would seem to be particularly practical for
studies of FLOSS, since thecodeis publicly available. Indesd, afew studies have already
examined this dimengon. For example, Stameloser al. (2002)suggested tha FL OSS codeis
geneadly of goodqudity. Mishra, Prasad & Raghunahan (2002)offer an andytic modd tha
suggests factors contributing to FLOSS codequdity, such as number of develope's, mix of talent
level, etc. On the other hand, not many FLOSS systems indudeinformation (ie data) per se, so
thedimengon of information qudity seemsto beless applicable.

User satisfaction

User satisfaction is an often-used measure of system success. For example, it is common
to ask stakeholdersif they felt aproject was a success (e.g., Guinan et al., 1998) Thereis some
data available regarding user satisfaction with FLOSS projects. For example, Freshmeat, a Web-
based system tha tracks releases of FLOSS (http://freshmeat.net/), collects user ratingsof
projects. Unfortunaely, these ratingsare based on a nonrandomsample (i.e., users who take the
time to volunteer arating), making thar representativeness sugpect. Furthermore, we have
observed tha the scores seem to have low variance: in arecent sample of 59 projects, we found
tha scores ranged only from 7.47to0 9.07 out of 10. It seems likely tha userswhodo notlikea
piece of software smply do not bother to enter ratings There do not seem to beany easily
obtainable data on therelated measures of perceived ease of use and ussfulness (Davis, 1989)

Opinionsexpressed on project mailing lists are a potential source of quditative data onthese
facets, thoughagan there would be questionsaboutthe representativeness of the daa.

In principle, it should be possible to survey usersto collect ther satisfaction with or
perceptionsof the software. However, to do so properly poses a seriousmethodobgical problem.
Because mog FLOSS projects are freely distributed throughmultiple channds, the popuktion of
uersisunknown, makingit impossible to create atruerandomsample of users. In this respect,
FLOSS differs greatly frominformation systems developed in an organizationd setting or for the
commercia market tha have aclearly defined user popuktion. Thesituaionis aso different
than for the Web, another nontraditiond systems environment, because with aWeb site users
are by definition theones who visit the site, making the popuktion effectively self-identifying.
To achieve the same effect for FLOSS, the best solution mightbeto build the survey into the
software, thoughdoing so might annoy some users. For example, recent versionsof theMozlla
Web browser indudea program tha offersto report crashes and collect other feedback.

Use

Althoughthere is some debae aboutits appropriateness (Delone& McLean, 2003;
Seddon,1997) many studies employ system use as an indication of information systems success.
For software for which use is voluntary, asisthecase for mos FLOSS, use seemslikea
potentially relevant indicator of the project success. Some interesting data are available. For
rare projects, these nunbers can be directly measured. For example, Netcraft conduds a survey
of Web server deployment®, which estimate the market share of different web servers. Other
projects that require some kind of network connection could potentially be measured in the same
way (e.g., indant messaging or peer-to-peer file sharing clients), but this approach does not seem
to bewiddy applicable. Avery Pennaun® Debian Popularity Contest® collects statistics on the
usage of software on Linux machines running the Debian distribution. Usersingall a program
tha collects and reports usage information daly and theresulting statistics show tha packages
have been indalled, and which of these have been recently used. Unfortunaely, these daa are
collected from anonrandomsample of machines, running a particular Linux distribution, so the
results are likely notrepresentative of use in the broader popuktion.

Rather than measuring actud use, it may be sufficient to countthe actud or potential
number of users of the software, which we labd QpopularityO(Stewart & Ammeter, 2002) A
simple measure of popukrity, and a highly populr onein the FLOSS literature reviewed beow,
isthenumbe of downloads made of a project. These nunbers are readily available from various
sites. Of course, nat all downloadsresult in use, so variance in theconveasion ratio will make
downloadsan unreliable indicator of use. Furthermore, because FLOSS can be distributed
throughmultiple outlets, on-lineas well as offline(e.g., on CDs), the countfrom any single
source is likely to bequite unreliable as a measure of total users. A particularly important
channd is Qlistribution®such as RedHat, SUSE or Debian. Distributionsprovide purchasers
with pre-selected bundles of software packaged for easy indallation and are often sold ona CD-
ROM to obviate the need to download everything. Indeed, themos popukbr software mightbe
downloaded only rarely because it is aready ingalled on mos usersOmachines and stable

® http://news.neftcraft.com/archivegwebserver_survey.html
* http://peaple dekianorg/~aperwarr/popcon/

enoughto notrequire the download of regular updates. Therefore, an important measure of
popukrity to consgde isthe package@ indusonin distributions

Othe sources of daareflecting onusers are available. Freshmeat provides a popukrity
measure for packages it tracks, thougha better name might be OnterestQ asit is onestep further
removed from actud use. Themeasure is calculated as the geometric mean of sub<criptionsand
two counts of page viewingsof project information® Similarly, SourceForge provides
information onthe number of page views of theinformation pages for projectsit suppots.

Findly, it may beinformative to measure use from perspectives other than that of an end
user. In paticular, the openness of FLOSS meansthat other projects can build ontop of it.
Therefore, onemeasure of a project@ success may betha many other projects use it. Package
dependency information between projects can be obtained from the package descriptions
available throughthe variousdistribut ongpackage management systems. Andysis of source
codecould revea thereuse of codefrom project to project (thoughidentifying thetrue origin of
the codecould bedifficult).

Individud or organizationd impeacts

Thefind measuresin Del. oneand McLean® (199) modd are individud and
organizationd impeacts for theusers. Thoughthereis consderable interest in the economic
implicationsof FLOSS, these measures are hard to definefor regular 1/S projects and doubly
hard for FLOSS projects, because of the problems defining the intended user base and expected
outcomes. Therefore, these measures are likely to be unusble for mod studies of individud
FLOSS projects.

Summary

To summarize, existing modds of information systems success suggest a rangeof
potential success measures for FLOSS projects as shown in Table 1. However, a nunber of the
measures are ingpplicable, while others are difficult to apply in the FLOSS environment. We
note tha many of these measures are based on a vision of system development in an organization
and do nottake into accountthe uniquecharacteristics of the FLOSS devel opment environment.
A deepe undestand of the differences between the process modd undelying thelS success
literature and the process of FLOSS development is needed.

® http://freshmeatnet/fag/view/30/

Table 1. Success measures suggested by the IS literature review.

Measure of Success Indicators Audience
System and information | Codequdity (e.g., undestandability, Users, develope's
quality completeness, condseness, portability,

congstency, maintainability, testability,
usability, reliability, structuredness,
efficiency)

Documentation qudity

User satisfaction User ratings Users, develope's
Opinionson mailing lists
User surveys

Use Use (e.g., Debian Popularity Contest) Developeas
Number of users

Downloads

Indusonin distributions

Popularity or views of information page
Package dependendes

Reuse of code

Individual and Economic and other implications Users, develope's
organizational impacts

Reconsidering Process: The process of FLOSS development

The previoussection congdered how success has been measured in thelS literature and
its applicability to FLOSS development. In this section, we extend these modds by reexamining
thevision of systems development undelying DeLoneand McL ean@ success modd to identify
additiond measures tha might beused for FLOSS project success. Deloneand McL ean
explicitly state that theér modd of project success was built by congdering Ga process modd
[tha] hasjud three components: the creation of a system, the use of the system, and the
consequences of this system useO(Del_one& McL ean, 2002) which we have shown graphically
in Figure 2. We note tha the measures induded in the modd focuson the use and conequences
of thesystem (therightside of thefigure), and do not open up eithe boxin the process. While
thisfocusmay be appropriate given thetraditiond conaern of information systems research with
theorganizationd implicationof IS, it seemsto unduly restrict therangeof measures consdered.

Organizational setting

System System

) —» Conseguences
creation use S

Figure 2. Process modd underlyingtheDel. one& McLean (1992)modd of success.

The choice of measures also seemsto beinfluenced by therelative ease of accessto the
use environment compared to the development environment for packaged or commercial
software. In the context of FLOSS though,researchers are frequently faced with the opposte
situaion, in tha many aspects of the development process are publicly visible while theuse
environment is difficult to study or even identify. For both reasons we bdieve that it will be
useful to complement previoudy identified |S success measures with ones tha take advantage of
theavailability of daa onthedevelopment process. As a structure for andyzing the systems
development process, we draw on Hackman((1987) modd of effectiveness of work teams. An
attractive feature of thismodd istha effectivenessis conceptudized along multiple dimensons
In addition to task output Hackman indudes theteam@ continued capability to work together
and satisfaction of individud team membersQpersond needs as relevant outputs. Thefollowing
discussion examines such measures of success.

Measures of the output of systems development

Two of themeasuresin the DeLoneand McLean@ modd concern the produd of the
systems development process, namely systems qudity and information qudity. We first consder
possible additiond measures of this process step in the FLOSS context.

Project completion. Firgt, given thelarge nunmber of abandonel projects (Ewus-Mensah,
1997) smply completing a project may be a sign of success. However, it is much more common
for FLOSS projects to becontinudly in development, makingit difficult to say when they are
completed. Faced with this problem, Crowston & Scozzi (2002)ingead measured success as the
progress of a project from alphato betato stable status as self-reported by theteam. For
example, for many teams the 1.0 release is a significant milestone

Second, another commonly used measure of success is whether the project achieved its
gods. This assessment istypically made by a comparison of the project outcomes with the
formal requirements specifications However, FLOSS projects often do nat have such
specifications Scacchi (2002)examined the process of Gequirements engineeringGin open
source projects and provided a comparison with the traditiond processes (e.g., Davis, 1990;
Jackson, 1995) He argues tha rather than aformal process, FL OSS requirements are devel opead
throughwha heterms Goftware informalismsQ which do notresult in agreed Qequirements
doaumentationCtha could later be andyzed to see whether the project has met its gods.
Scacchi® ethnogephy further suggests that for FLOSS, gods will likely come from within the
project throughadiscursive process centered on the developeas. Therefore, a key measure for

FLOSS may besimply develope satisfaction with the project, which correspondsto Hackman(3
(1987)individud satisfaction dimenson. Develope satisfaction could be measured by surveying
developeas: thedevelope community is much more clearly ddineated than users, making such a
survey feasible. Indeed, there have already been several FLOSS develope surveys (e.g., Ghodh,
2002;Hertd et al., 2004, thoughnotonthis topic specifically. Since in many projectsthereisa
great disparity in thecontribution of developas-afew developas contribute the buk of the code
(Modkuset al., 2000)it may be desirable to weight developasQopinionsin forming an overall
assessment of a project.

Measures of the process of systems development

In DeL.oneand McLean@ (1992)process modd, systems development isimplicitly
treated as a oneoff event. However, for FLOSS projects (and indesd many other types of
projects) development is ingead an ongoing activity, as the project continues to release ften
and earlyO(Raymond, 1998) In other words, a FLOSS project is often characterized by a
continuing process of developeas fixing bugs adding features and releasing new versionsof the
software. This characteristic of the FLOSS devel opment process suggests a nunmber of possible
indicators of success.

Number of developers. First, since many FLOSS projects are dependent on volunteer
developes, theability of aproject to attract and retain develope's on an onrgoing basisis
important for its success. Thusthe nunber of developeasinvolved in aproject could bean
indicator of success. Thenumber of developa's can be measured in at least two ways. First,

FL OSS development systems such as SourceForgelist developas who are formally assodated
with each project, a measure that could also be discovered throughexaminaion of CV S logsfor
projects where develope's contribute codedirectly (ie notvia a pach submission process).
Second, examindion of themailing lists and other fora assodated with projects can reveal the
number of individuds who actively paticipae in development activities withoutbeng formally
assodated with the project.

Level of activity. More important than the sheer number of developeasisthar
contribution to a project. Thusthelevel of activity of developesin submitting codeand bug
reports may be useful as an indicator of project success. For example, SourceForge computes and
reports a measure of project activity based on theactivities of develope's. Researchers could also
examine development logsfor evidence of software beng written and released.

Cycle time. Another measure related to the groupactivity is time between releases. In
FLOSS development, there is a strongcommunity norm to Qelease early and release oftenQ
which implies tha an active release cycle is a sign of a healthy development process and project.
For example, FreshMeat provides a Qvitality scoreO(Stewart & Ammeter, 2002 that assesses
how recently a project has made an announ@ment of progress on the FreshMeat site®. In
addition, detailed examinaion of bug-fixing and feature-request fulfillment activities might yield
useful process data indicative of the project@® status. These processes involve interaction with the
user community and can involve applying paches of contributed codesupplied by non-core
developes. Bug reports and feature-requests are typically managed througha task-management

® http://freshmeatnet/fag/view/27/

system that recordsthe develope and community discussion, pemits labding of priority items
and sometimes indudes informal Qroting mechanismsOto allow the community to expressits
level of interest in abugor new feature. Thetime to close bugs(or implement requested
features) and the propottion of bugsfixed therefore might be hdpful measures of the strength of
a project@ processes and thusindirectly of its success.

Effects on project teams

Findly, because the projects are on-going, it seemsimportant to congder theimpact of a
project on theabilities of the project team itself and its ability to continueor improvethe
development process. This dimenson correspondsto the Hackman@® (1987 dimenson of the
team@ continued capability to work together. As Shenha e al. putit, how does the current
project hep prepare the organization for future chdlenges?O(Shenha et al., 2001)

Employment opportunities. Some literature on themotivation of FLOSS developas
suggests tha developa's paticipae to improvethdr employment oppotunities (e.g., Lerne &
Tirole, 2000) Thus onecan consder salary or jobs acquired throughtheinvolvementin a
paticular project as possible measures of success (Hann et al., 2004. For example, Hann et al.
(2002)foundthat highe statuswithin the Apache Project was assodated with significantly
highea wages. Agan, onemight measure these indicators by surveying developes. Whilefor a
single develope, these measure are confoundel with innae talent, training, ludk, etc.,
aggregdaing across many develope's and across time may provide a useful project-level measure
of success.

Individual reputation. Similarly, literature also suggests tha developa's paticipaingin
FLOSS projects are rewarded with reputation in the community, and tha this reputationis a
sufficient reward for interaction. Kelty (2001)suggests that reputation might be measured
throughan andysis of credits located in source code (which heterms QyreputationQ. Alterndive
measures of FLOSS reputation mightindudethe FL OSS communitiesQimplementation of a
QWeb of TrugOat the community site Advogdo’ where develope statusis conferred through
peer-review. Andyses of this kind of measure face thedifficulty of tyingthe earning of
reputation to the success of a paticular project and systems tha have incomplete paticipation.

Knowledge creation. Projects can also lead to creation of new knowledgefor individuds
aswell asonthegrouplevel (Arent & N¢ rbjerg, 2000). Throughther participaionin a project,
individud developeas may acquire new procedural and programming skills tha would benefit
them on future projects. Thiseffect could be measured by surveying the developeasfor ther
perceived learning. In addition, following Grant@ (1996)knowl edgebased view of thefirm, one
can consder the project as astrudture to integrate membersCknowledgeinto produds. In this
view, the project@ rules, procedures, norms and existing produds are areflection of knowledge
being created by the project activities. This knowledgecreation can be measured by oberving
and quditatively andyzing changes in thewritten rules and procedures over time and may be
reflected and tranderred throughthe development of systems for FL OSS project suppot, such as
SourceForge and Savannah. Andysis of thedevelopment of interactionsand suppot systems
closly linked to a project mightgive some indghtinto this aspect of project success.

" http://www.advogato.org/trust-metric.html

Summary of measures from process reconsderation
Table 2. Measures suggested by a reexamination of the FLOSS process.

Measure of Success Indicators Audience
Project output Movement from alphato betato stable Developes

Achieved identified gods

Developea satisfaction

Number of developeas Developes, users
Process Level of activity (develope and user

contributions number of releases)
Time between releases
Time to close bugsor implement features

Individud job oppotunities and salary Developeas
Outcomes for project Individud reputation
members Knowledgecreation

In summary, consderation of the process of developing FLOSS suggests a nunmber of
additiond measures indicative of success for these projects. These measures are summarized in
Table 2. We note that as the measures movefurthe back in the process modd, they become
increasingly removed from theuser. As such, there may be a concern aboutther validity as
measures of success: isit asuccessif a project attracts developeas but notusers? Or if it develops
high qudity processes but not high qudity code? We have two replies to this concern. First, the
appaent disconneet may be an accurate representation of thereality of FLOSS projects, in which
thedevelopes frequently are the users. Second, the measures developed in this section should be
viewed as complements to rather than replacements for the more conventiond measures of
success. Using avariety of measures will provide aricher picture of the statusof a project. As
well, because many of theindividud measures seem likely to have measurement problems, or
measure success from different perspectives, adoping a portfolio of measures seems prudent.

Seeking input from FLOSS developers

Having reviewed thelS literature on IS success and extended this conceptud modd by
congdering the uniquefeatures of the FLOSS devel opment and use environment, we continuel
our theory building by turning to the open source community for inputonthar definitionsof
success. Our god was to extend our conceptuad modd by generating arangeof ideas to compare
and extend of our list of factors, rather than therelative importance of each oneor therelations
amongthem.

To solicit input, we poged a question soliciting feedback on SlashDot® a Web-based
discussion groupthat attracts consderable interest and paticipaionfrom FLOSS developasand
users. This data elicitation techniquewas more like an on-linefocusgroup (or perhgpstheinitial
stage of a Delphi study) than a survey, asrespondents were a nonrandomsample, and could see
and respondto earlier postings This approach was chosen to match our god of generatingideas
aboutsuccess measures, rather than testing a theory or making inferences from generalizable

® http://slashdot.org/

daa To elicit comments, thefollowing question was poded on SlashDot on 22 April 2003
(http://dashdotorg/article.pl?sd=03/04/21/239212)

There have beena number of discussions on Slashdot and elsewhere about how good
projects work (eg., Talk To a Successful Free Software Prgect Leadkr), but less about
how to tell if things are going well in the first place While this may seem obvious, most
tradtional definitions of software project success seem inapplicade (eg., profit) or
nearly impossible to measire for most projects (eg., market share user satisfaction,
organizational impac?. In an organizaional setting, developers can get feecback from
their customers the marketplace, maragers etc.; if youOreApache, you can look at
NetcraftOsurvey of server usage; but what canthe res do? Is it enough that youOréappy
with the code? | suspect that the releag-ealy-and-often philosophy plays an important
role here.lOmasking not to pick winnersand losers(i.e, NOT ararking of project), but
to underdand what developers look at to know when things are going well and when
theyOrenot.

Thequestion received 201 responges within afew days. A transcript of responses was
downloaded on 26 April, 2003.Many of theindividuds poging answversto our question
identified themselves as develope's or contributors to FLOSS projects. As acheck onther
gudifications we searched SourceForgefor information aboutthe pogers. Although
SourceForge and SlashDot are separate sites, many develope's have strong attachments to thar
user IDs and use the same onewhenever possible, providing a possible link between the two
systems. For example, it seems reasonable to expect that theuser ID Abcd1234 identifiesthe
same individud on both systems. We identified the SlashDot IDs of 72 pogers who provided
useful responges (some responges were anonynoug. Of these 72, 34 1Ds matched a SourceForge
ID exactly, and 6 could be matched with a bit of research (e.g., by matching thereal name of the
individud; real names are available for afew SlashDot pogers and many SourceForge
developas). Of thematched IDs, 16 and 3 respectively were listed as members of SourceForge
projects (i.e., abouthdf). A few other poders had pointers to non-SourceForge FL OSS projects
onthar SlashDot information page or information aboutther employment, generdly as software
developeas. These daaare notcondusve, butdo suggest that a number of the contributors to the
study had sufficient backgroundas FLOSS developes to be able to comment knowledgesbly.

Thetranscript was content andyzed by two codes. Thecontent andysis process was
carried outusng Atlas-ti, aquditative daaandysis software package Messages were coded
usng thethematic unit as the unit of andysis. Once a measure was identified within a message,
the code selected thetext containing the measure and codeal tha text usng categories from our
coding scheme. A total of 170thematic units were identified and coded in 91 responss (i.e.,
some podingscontained multiple units; theremaining respongs did not contain text addressing
thequestion, e.g., a poding containing an advertisement). The content andysis process employed
amixture of dedudive andindudive procedures. Theinitial content andytic scheme was based
ontheliterature review described above Duringthe process of content andysis, additiond
themes emerged fromthe daa. Data andysis continued untl saturation was reached. Thetwo
raters agreed on the codes for 78% of theunits. We felt that thislevel of agreement was
sufficient for the purposes of the andysis (identification of measures to compare to theliterature
review), so we did notgo onto refinethe definitions of codes or retrain the codasto increase
agreement. Theresults of the content andysis are summarized in Table 3.

Table 3. Results of the content andysis of SlashDot respons.

Level 1 Level 2 Frequency |Percentage
User Satisfaction 14 8%
Involvement 25 15%
Produd Meets requirements 9 5%
Code quality 11 6%
Portability 1 1%
Availability 2 1%
Process Activity 5 3%
Adheence to process 10 6%
Bugfixing 4 2%
Time 2 1%
Age 1 1%
Developas |Involvement 16 9%
Varied develope's 2 1%
Satisfaction 29 17%
Enjoyment 8 5%
Use Compdtition 4 2%
Number of users 2 1%
Downloads 3 2%
Recogntion |Referrd 3 2%
Attention and recognition 9 5%
Spin offs 6 4%
Influence 4 2%
Total 170

The codes were organized into atwo-level hierarchy for presentation, with detailed codes
(level 2 inthetable) clugered into meta-categories (level 1). 32% of theunitsinduded elements
from thedevelopas meta-category, indicating tha therespondents felt tha a project is
successful if thedevelope's are involved, satisfied, enjoyed the process and that there is avariety
of them. TheUsers meta-category aso had alargenumber of responss. 23% of units indicated
tha the poder felt a project was successful if it satisfies users (other than developea's) and tha
users are involved in discussonsand bugreports. Involvement of both users and developas was
frequently mentioned, accouning for 31% of theunits. Project recognition codes were foundin
11% of the units, exceeding the number of responss indicating use as a measure of success,
which accounted for 5% of ingances. Findly, theprodud® qudity (13%) and process (13%)
were suggested to be measures of success by developas aswell. Note tha percentages are
reported only to more completely describethedaa. Given thenonrandomsample of

contributors and the open daa elicitation technique, thefrequency of arespons should not be
interpreted as importance.

Overdl, theresponses of the developea's poging on SlashDot were in general agreement
with thelist of success measures we developed from theliterature and our reexaminaion of the
process. Theandysisindicates tha developers found thar pesond involvement, satisfaction and
enjoyment to be measures the success of a project, congstent with theview of FLOSS as
Goftware tha scratches an itchO However, some new themes did emerge from the coding.

¥ Firgt, anumber of respondents suggested recognition (e.g., mention on other Sites), asa
measure of project success. This measure could beopeaationdized by searching the Web
for the project name (for projects with uniquenames) or for the URL of the project@
home page A related suggested measure was the influence of theprodud or project@
process on other FLOSS groupsand other commercial settings These responss are
congstent with the literature on FLOSS devel opersOmotivationstha suggest recognition
as a primary motivation for involvement.

¥ A second category tha emerged was thelevel of involvement of theusers as indicated by
involvement of the users in submitting bugreports and participaing in the project
mailing lists. We had consdered contributionsfrom developers, butthese respongs
emphasize thefact tha FLOSS projects are a'so dgpendent on hdp from users to identify
problems and pog suggestions

¥ A find category tha emerged from the data was theissue of porting. Developea's consder
porting of a produd to different systems (especially to Windows), and requests for such
ports as a measure of the success of the produd. Thistheme mightbeconsdered a
specia case of popukrity.

Wha was also surprising was wha respondents did not say, in tha norespondents
mentional some of the measures of success we had identified. For example, thoughseverd
authors have suggested that develope's are motivated by the chance to learn and perhgpsget a
better job, noneof therespondents mentioned these factors. A possible explanaionisastrong
community nom on SlashDot tha endorses atruism over expressionsof self-interest, which
may have restricted discussion in the nonranonynousand community-moderated forum.

Success measures in recent FLOSS research

In the previoussections we developed alist of possible success measures for FLOSS
projects based onareview of thelSliterature, with extensonsbased on a consderation of the
FL OSS development process and feedback from FLOSS developess. In this section, we examine
the current state of academic research on FLOSS. To undestand how success has been
opeaationdized in recent FLOSS research, we carried out a content andysis of theworking
pape's poded onthe http://opensource.mit.edu/ pre-press webdte. Asof 1 March 2005,thesite
induded 182 recent working papers and abgracts, thuspresenting a convenient cross section of
theliterature. We chose to use this source for several reasons the abgracts for the pgpers were
all ononepage makingit much easier to collect them (vs. doing manud searches across
multiple joumd webgtes), the pgpers were recent, having not been ddayed by the publication

cycle, and the papers presented a broad cross section of FLOSS research, while joumd

publcationslikely have some selection based on theinterests of thejoumd.

Four people codel the pgpers onthesite for typeof pgper (empirical vs. conceptud) and
for use of project success as a dependent variable (if any). The pgoers were divided into 3 groups
forinitial coding by 3 of the code's, and the empirical pagoe's were then recoded by afourth
code to ensure comparability in the coding. Of the 182 pgpers, 84 were deemed to be empirical
studies. Of these only 14 were identified as studying success, performance or effectiveness of
project teams in some manne. Table 4 shows the specific conaepts and measures we foundwith
citationsto the assodated pape's.

Table 4. Success measures in recent FLOSS research.

Type

Measure

Operationalization

Example citations

System Creation

Activity/effort

Sourceforge activity level

(Crowston et al., 2004)
(Crowston & Scozzi, 2002)

Time invested per week by
administrators

(Stewart & Gosain, 2004)

Time spent in discussion

(Butler et al., 2002)

Number of message posts on
Sourceforge

(Krishnamurthy, 2002)

Size of development
team

Number registered as developers on
Sourceforge

(Krishnamurthy, 2002;
Stewart & Gosain, 2004)

Number checking code into CVS

(Mockus et al., 2000; Reis
& Fortes, 2002)

Number of posters on mailing lists

(Mockus et al., 2000)

Number of postersin bug tracker

(Crowston et al., 2004)

Programmer
productivity

Lines of code per programmer per year

(Mockus et al., 2000)

Project development
State

Active or not on Sourceforge

(Giuri et al., 2004)

Development stage on Sourceforge

(Crowston & Scozzi, 2002)
(Krishnamurthy, 2002;
Stewart & Gosain, 2004)

Task completion

Speed in closing bugs or tracker items

(Mockus et al., 2000)
(Stewart & Gosain, 2004)
(Crowston et al., 2004)

Development of stable
processes

Description of development processes

(Reis & Fortes, 2002)

System Quality Modularity Modularity of source code (Shaikh & Cornford, 2003)
Correctness Defects per lines of code/deltas (Mockus et a., 2000)
Manageability Lines of Code under package (Gonztlez-Barahona &
management Robles, 2003)
Maintainability Common coupling (Schach et al., 2003a)
(Schach et al., 2003b)
System Use Interest Sourceforge page views (Krishnamurthy, 2002;

Stewart & Gosain, 2004)
(Crowston et al., 2004)

Copiesin circulation

Sourceforge downloads

(Krishnamurthy, 2002;
Stewart & Gosain, 2004)
(Crowston et al., 2004)

Market share

Netcraft survey

(Mockus et al., 2000)

Support effectiveness

Number of questions effectively
answered

(Lakhani & Woif, 2003)

Time spent seeking help/providing

(Lakhani & Woif, 2003)

help
System Learning by Developers - Motivations of developers for reading | (Lakhani & Wolf, 2003)
Conseguences and answering questions
Tool development Description of tools (Reis & Fortes, 2002)

There are two striking features of this table. Firstly thereisawiderangeof alternaive
measures of project success, thefield has not settled on any onemeasure, or systematic group of
measures. Secondly, there are a great many measures related to the process of system creation
itself, especialy if oneindudes Qearning by developesQas an outcome measure internd to the
team. Thisis pleasingly consstent with reconsideration of 1S success moddsin the FLOSS
context presented abovewhich pointed to the early stages of systems development as particularly
important to an undestanding of IS success in the FLOSS context.

Summary of conceptual scheme for FLOSS success

Table 5 presents a summary of the success measures, and possible opaationdizations
tha we have discussed above Using our re-congderation of the FLOSS process as its
framework, thetable draws togeher theingghts from thereview of thelS literature, our
extengon of these moddsin light of the FLOSS process, inputfrom FLOSS developasvia
Slashdotand our andysis of the existing literature studying FL OSS.

Table 5: Summary of conagpts for Information Systems success in FL OSS context

Process Phase Measure Potential Indicators
Systemcreation Activity/Effort Filereleases CVS checkins, mailing list discussions,
and maintenance tracker discussions, surveys of timeinveded.
Attraction ard retertion of | Size,growth and terure of developmert team through
developers(Developer examination of regstration, CVS logs. Pasts to dev
satisfaction) mailing lists and trackers. Skill coverage of
developmert team. Surveys of satisfaction and
enoymert.
Advancerert of project Relea® numbersor alpha, beta, matre self-
status assesmert, requed for erhancemertsimplemerted,
Task completion Timeto fix bugs, implemening requeds, meeting
requirements (eg J2EE specification). Timebetween
releags
Programmer productivity | Linesof code per programmer, surveys of
programmer effort.
Developmert of stabe Documertation ard discussion of proceses
procesesand their rendering of processesinto collaborative tools,
adoption naming of processes adoption by other
projecis/endeaors.
Systemquality Code quality Code aralysis meticsfrom software engineering.
(Modularity, Correciness, Coupling, Complexity.)
Manageallity Timeto productivity of new developers amount of
code abandonmert.
Documertation quality Use of documertation, user studiesand surveys.
Systemuse User Satisfaction User ratings, Opinions on mailing lists, User surveys
Number of Users Suveys (eg DehianPopularity contes), downloads,

inclusion in distributions, , package deperdercies
reuse of code.
Interes Site pageviews, Parting of code to other platforms,
Developmert of competing products or spin-offs.
Support effeciveres Number of quedions effectively answered time
requiredto assist newbies
System Economic implications Implemertation studies egtotal cost of ownership,
consequernces ca® studiesof enablemert.
Knowledge Creafon Documertation of proceses creaton of tools.
Learning by developers Suveys ard Leaning episode studies
Future income and Longitudinal Surveys
opportunitiesfor
participarns
Removal of competitors Opensourcing (or substartial feature improvemert)
of competing proprietary applicaions.

Empirical study of success measures using Sourceforge data

The previoussection of this pgpoe developead a conceptud modd of success factors based
ontheliterature and theoretical consderationsand compared these to developea opinionsand the
current state of the empirical FLOSS research. In this section, we continueour examination of
success measures usng datafrom Sourceforge This study demondrates the opeaationdization of
three of the measures we suggest aboveand allows usto assess thar internd validity. Following
our report of this study we congder its implications for our theory building and suggest future
avenues of research.

From the measures developel above we chos the number of develope's (assessed from
therecordsof the project and from bugfixinglog9g, bugfixing time, and popukrity (assessed
fromthenumber of downloadsand viewingsof project Web pages, andindusonin
distributiong. These measures were chosen because they span thereconsdered FLOSS
development process discussed above induding inputs (nunber of developea's), process (speed
of bugfixing) and output (popukrity).

Our andysisaims at assessing the utility of these measures for future research. Each has
goodface validity, in the sense tha a project tha attracts develope's, fixes bugsquickly and
which is popubr does seem like it deserves to bedescribed as a success. We are also interested
in assessing how these measures relate to oneanother: do they measure the same condruct or are
they measuring different aspects of a multidimensond success construct? And mog importantly,
wha indghtdo they provideinto the naure of the development processesin the different
projects?

Method

In order to assess the utility of these measures, we first developed opeationdizationsfor
each measure based on data available on the Sourceforge webdte. We then collected datafrom
the system, usng web spiders to download the html pages and parsing outtherelevant fields

With thedaain hand we processed each individud measure, achieving results which we present
beow. We then examined the measuresCrel ationships usng a correl ation matrix (with
Bonferonn correctionsfor multiple correlationg to seeif these measures measure the same or
different things

Opeationdization

Inputs: Developer counts. We opaationdized thenumber of developeasinvolved ina
project in two ways. First, we extracted the devel oper countfrom the SourceForge project
summary pages. Alterndive opeationdizationsconsdered induded andyzing the CVSlogsto
countthedevelopeas contributing, but this methodassumes tha all projects allow all developeas
direct access to the CV S (rather than usng a pach submission system) and, more
problematically, that only those contributing codeto CV S should be counted as developes.
Therefore, we used the project@ own definitionsof developa's. The counts on the Sourceforge
summary page are self-reported data but since being listed as a develope there involves both an
application and approvd by a project administrator, it provides a useful measure of develope
involvement. In order to assess how well projects were doing in attracting and retaining
developes, we andyzed the changein developea count over time. A project tha has agrowing
number of developasis more successful in attracting developea's than onethat has a shrinking
number. These changes were andyzed both as categorized time series and usng aweighted ddta
more appropriate for our intended correlation study.

Second, since the FLOSS development process relies on contributionsfrom active users
aswell as core developa's, we wanted ameasure tha reflected the size of this extended team,
rather than jud the core developes. As aproxy for the size of the extended development
community, we counted the number of individuds who poded a bugreport or messageto the
SourceForge bugtracker. Alternaive opeationdizationsof this would indudecouning pogers
onthevariousmailing lists, induding development lists and user-suppot lists. Andyzing ingead
the bugtracker was practically convenient (as we were aready collecting that daa) but
participaion there also demongrates closer invdvement in the project than jug poding user
guestionsto themailing list, as well as being a venue where direct interaction between users and
developaswould befound

Process: Speed of bug fixing. We opeaationdized team performance in speed of bug
fixing by tumingto the bugtracker provided to Sourceforge projects. We examined howlongit
took the program to fix bugsby calculating the lifespan of each bugfrom report to close usng
the opened and closed timestampsrecorded by the bugtracker. Themog straightforward
andysis would beto cal culate each project® average bug-fixing time. However, this approach
has severa problems. First, thetime taken to fix bugsis highly skewed (mog bugsare closed
quickly, buta small number take much longe), making an average unrepresentative. Secondand
more problematically, because not all bugswere closed at thetime of our study, we do nat
aways know the actud lifespan, but only alower bound.Thistype of datais described as
@ensoredOdata. Simply leaving out these und osed bugscould bias the estimated time to fix
bugs Findly, andyzing only the average does nottake into accountavailable buglevel daa. If
there are differences between projectsin thetypes of bugsreported (e.g., in ther severity), then
these differences could affect theaveragelifespan for a project. In theandysis section bdow we

describe how we approached these difficulties usang the statistical approach known as survival or
event history andysis.

Outputs: Popularity. Our find measure, popukrity, was assessed in three ways. First, we
extracted the number of downloads and project page views reported on the SourceForge project
pages.’ Because some projects were older than othes, we opeationdized this aspect of
popukbrity as downloadsand pageviews per day. In keeping with a portfolio approach to success
measurement, we also measured popukrity by examining whether the project produced programs
tha were indudel in the Debian Linux distribution, thelargest distribution of FLOSS. Debianis
distributed as a base indallation and a set of additiond packages for different programs. Not all
the programs produced by FL OSS projects are candidates for indusonin aLinux distribution
(for example, some projects are written only for the Windows or Mac OS X platform), so this
measurement was only taken for projects produang programs eligible forindugonin the
distribution.

Data collection

To gahe daaaboutthe projects, we developed a spider to download and parse
SourcelForge project pages. Spidering was necessary because the SourceForge daabases were
not publicly available'. Data were collected at multiple points to allow for alongitudind
andysis. We collected daa in February 2001and April 2002.We also obtained datafrom
Chawlaet al. for Octobe 2003(Chawlaet al., 2003) and from Megan Conklin for Octobea 2004
and February 2005(Conklin, 2004) These data have been collated and made available viathe
FLOSSmole project (http://ossmole.sourceforgend/, Howison et al., 2005. Theuse of daa
from multiple pointsin times provides a dynamic view of the projects lacking in mog andyses
of FLOSS projects.

At thetime we started our study, SourceForge suppoted more than 50,000 FLOSS
projects on awidediversity of topics (the nunber was 78,003 as of 21 March 2004and 96,397
projects and more than 1 millionregistered users by 28 February 2005) Clearly notall of these
projects would be suitable for our study: many are inactive, previousstudies have suggested that
many are in fact individud projects rather than thedistributed team efforts we are studying
(Krishnamurthy, 2002) and some do not make bugreports available. While we were able to
assess these difficulties at thetime of our origind project selection, the FLOSSmole data spans
five years and covers al of the projects onthe site over that period and so weillugrate our next
point with tha more complete data. With respect to our first measure, developaslisted on
Sourceforge homepages, our data confirmed theimpression gained from previousresearch: of

® The SaurceFage wetlsite at the time of data callecion noted that (download statistics shown on this

page for recert datesmay be inaccurateO but our examination of the data suggeds a systemaiic
underreprting, rather thana biasin favor of one projed or another. As areault, while the absolute
numbersmay be wrong, the data are suffi ciert to indicate relative performarce of projects ard the
relationships of these data to othervariables

In the period betweenour research and this publicaion alimited amount of Saurcefarge data became
available directy from database dumps providedto resarclersvia a group basdat Notre Dame
(http://www.nd.edu/~oss/Data/data.html). It is our understanding that this data source doesnot
include tracker or mailing list informaion, but certainly if the conditions areacceptable to resarchers
and the data adequate this appearsto be an excellent source of cleandata.

10

the 98,502 projects tha we examined in the SourceForge system up to February 2005,64 881
(67%) had never had more than onedevelope registered to the project at any time in thefive
years, as shown in Figure 2.

Maxiumum Number of Developers on Sourceforge Projects
100,000

]
I
— gs3 468 2,079
. 953
80,000 -
6,637

3
%)
- 15,519
© 60,000 Z
-
a
s 64,881 98,502
]
2 40,000
£
3
4

20,000

0
2 3 4 5 6 7 8 s 10+ Total

Maximum Team size (members)

Figure 2. Maximum number of listed develope's per project on Sourceforge projects
ove thefive year peiod from 2001to 2005.

It was also clear that notall projects used the Bug tracking system sufficiently to allow
the calculation of community size, nor speed of bug fixing. In order to collect ussful datafor
these measures we restricted our study to projects that listed more than 7 developas and had
more than 100bugsin the project bugtracker at the time of selectionin April 2002 This
restriction was judified theoretically aswell as practically: Having multiple developas suggests
tha the project isin fact ateam effort. Having bugreports was a necessary prerequisite for the
planned andysis, aswell asindicative of a certain level of development effort. Quite
surprisingly, we identified only 140 projects tha met both criteria The sample indudes the
projectscurl , fink ,gaim,gimp-print ,ht dig , jedit ,lesstif |, netatalk
phpmyadmin , openrpg , squirrelmail andtcl (acompletelistisindudel inthe
Appendix). Those familiar with FLOSS will recognize some of these projects, which span awide
range of topics and programming languages.

[206585] crash with icq chat

Email: | Monitor] (2)

Date: Priority:
2000-05-28 12:56 5

Submitted By: Assigned To:
hub (khub) Bill Soudan (bills)
Category: Status:

system Closed
Summary:

crash with icq chat
each time | try an icq chat session the whole program closes itself immediately

Followups:
Message
Date: 2 07-29 08:56
Sender: denis
Ok, since ib reported it works for him, I am closing this bug.

To robvnl I repeat:
“please try latest sources from CVS"...

Date: 2000-06-29 13:02

Sender: robvnl

Module Name: kicg

Latest release is 19991212.

is written here, or did I probably install a Beta version 19991212?
It would be great to can chat again!

Date: 2000-06-18 01:10
Sender:
I've try the latest version, it seems to work perfectly
That's marvellous...

Date: 2000-06-17 06:50

Sender: denis

Ok, lets try it one more time - WHA ERSION OF KICQ do you use?
There was dramatic improvements in t code since 1991212 beta,
so please try latest sources from CVS and report your comments
back.

Date: 2000-06-08 12:32

Sender: robvnl

Hi, ave the exact same problem. It doesn't make difference
wether I initiate or the other party initiates the chat. I us

(the previous 1li
difference to r vith
chat reque: 1
I get USER H.
a core dump.

it needed it. Also it do
old or new QTDIR set. Som

Date: 2000-05-29 05:03
Sender: denis
What version do you try?

Figure 3. Example bugreport and followup messages™

To study the performance of bugfixing, we collected data from the SourceForge bug
tracking system, which enables usersto report bugs and to discuss them with developeas. As
shown in Figure 3, abugreport indudes a description of abugthat can befollowed up with a
trail of correspondence. Basic datafor each bugincludesthedae andtimeit was reported, the
reporter, priority and, for closed bugs the date and time it was closed. To collect this daa, we
developeal a spide program that downloaded and parsed al bugreport pages for the selected
projects. The spider was runin March 2003 Unfortunaely, between selection of projects and
daa collection, some projects restricted access to bug reports, so we were ableto collect datafor
only 122 projects.

Once obtained and parsed we conduded a basic exploration of the data for the purposes
of data cleaning, which revealed problems with thequdity of the datafor some of the projects.
For example, oneteam had appaently consolidated bug reparts from anothe bugtracking
system into the SourceForge tracker. These copied-ove bugsall appeared in SourceForgeto

11

adaptedfrom http://SaurceFage.net/tracker/index.php?func=
detail &aid=206585&g roup_id=332&atid=100332

have been opened and closed within minutes, so this project was eliminaed from further
andysis. Anothe project was eliminaed because al of thebugreports were in Russian, making
thedaaimpossible for usto interpret (and appaently for others aswell: only 3 pogers had
paticipaed, despite 9 develope's beng registered to the project). As aresult, the sample for the
remainde of theandysis was reduced to 120 projects. We adso ddeted afew bugreports where
the computed lifespan was 0 secondsor less dueto errorsin thedaaor in theparsing. We
obtained daa on atotal of 56,641 bugreports, an average of 472 per project. The median number
of reportswas 274, ind cating a skewed distribution of bugreport couns.

Analysis

In this section we present the andyses we performed for each of our measures, deferring
theresults for a unified presentation be ow.

Popularity. Of ourtwo measures of popukrity, numbe of developas and community
size, community size required little detailed andysis. We simply counted the uniquenumber of
pogersto the bugtrackers on Sourceforge dropping only the system@ indicator for anonynous
poding.

Theandysis of developa numbers was more invaved because, as mentioned above a
uniquefeature of our daa ondevelopa numbersistha we had data over time, which allows us
to assess how the number of developasin a project changes over time, and we wanted to take
advantage of tha. However, since we had only five daa points, measured at incongstent time
intervals, it was impossible to apply standad time series andysis techniques. We therefore
smply grouped projectsinto six categories based on how the number of developers had changed
over timeN whether it had risen, fallen or stayed the same, and how consstently it had doneso.*?
The precise definitionsof thesix categoriesis presented in Table 6. Figure 4 shows the series
allowing avisud ingection to assess the reasonableness of the categorizations

Table 6. Definitionsof categories of patern of changein developea count.

Category Description
No falls, Rising: a patern of consecutive
1. Consistent Risers rises at least hdf aslongasthewhole
series was found*
2. Risers Mogly Rising butwith at least onefall.

3. Steady or nottreading Unchanged or nether rising nor falling
At mog onerise butmodly Falling: a

4. Fallers patern of consecutive fals at least hdf as
long as the whole series was found*
5. Consstent Fallers Always Faling, norises at all.
6. Dead Projects Project removed from SourceForge
* Arise(orfall) followed by no changewas counied as two consecutive rises (or
falls)

12 \We have madk the code for this categorizaton available viathe FLOSSmnole project.

Fig 4a: Consistently rising teams

Developer Count (log scale)

— =-d
2001 2002 2008 2004 2006
Fig 4c¢: Steady or
Not Trending teams
R 7 7o
§ 8] 3 =t
. -
T &1
g - . . // *.
B
o e
- 24
. > -0
£ e se
)] e o‘\o
g v -l L]] — - L] l.
2001 2002 2008 2004 2006

15
1

/

Developer Count (log scale)

2001 2002 2003 2004 2006

Developer Count (log scale)

Developer Count (log scale)

Developer Count (log scale)

/I

5 10

S 10 20 X

2

15

10

Fig 4b: Rising teams

—

- ./ -9
-l d

T Y T Y T
2001 2002 2003 2004 2006

)
o
[Y
/o
o
T L] | L] L\l
2001 2002 2003 2004 2006

Figure 4. Changesin developea count pe project over time, categorized by trend. (log
scale, note that the vertical axisisincongstent with lower total numbersin e andf)

A visud ingection of thediagrams suggests tha the grouping of thepaternsis
reasonable. Figure 4ashows thetrend for the highnumber of projectsin our sample tha have
continudly attracted developes. Figure 4b shows thetrend for projects tha tend to grow but
which have, at times, fallen. Figure 4c shows unchanged or projects tha move up and down
withoutatrend. Not al the projects in this category were started at thetime of our first data
collection, so further daa collection may reveal atrend and facilitate sorting into oneof theother
categories. Figure 4d shows projects that have fallen for at least hdf of thar life spansand risen
in only oneperiod. Interestingly therise isalmog always early in thelife of the project, followed
by a sustained decline. These projects appear to have attracted some initial interest butwere
unauccessful in retaining develope's. This may indicate troubles in theteams despite an
interesting task. Figure 4e shows projects tha have never grown and have log membersfor at
least 2 consecutive periods Findly, Figure 4f shows projects for which data became unavailable.
These are dissolved projects are ones tha have been removed from SourceForge Theresults of
compaing these categorizationswith the whole Sourceforge popuation are presented bdow, in
thediscussion section, allowing usto interpret our resultsin thefull context.

While thedevelope series categorization was useful, it was not suitable for the
correlation study of the proposd success measures. For tha purmpos, we computed aweighted
average of the changes from period to period, usng as weights theinverse of theage (1/1 for the
changefrom 2004to 2005 Y for the changefrom 2003to 2004 etc.). This procedure was
adopied based on thetheory that theability to attract and retain developeasis an indicator of
success and to focus attention onthe growth (or decline) in developeas and to give more weight
to recent experience. Thisweighted averagefigureis reported bdow.

Community Size The poger of bug reports and related messages are identified by a
SourceForge 1D (thoughpogingscan be anonynous), making it possible to countthe number of
distinct I1Ds appearing for each project. We counted atotal of 14,922 uniquelDs, of whom 1,280
were involved in more than oneproject (onewas involved in 8 of the projects in our sample).
Thetotal counts per project were log trandormed to correct skew, which isjudified asit isthe
result of agrowth process.

Bug-fixing time. As discussed abovethe andysis of bugfixing speed is complicated by
therightcensored data available. Andysis of censored lifespan daa involves a statistical
approach known as survival or event history andysis. Thebasic ideaisto calculate fromthelife
spansa hazard fundion, which is theingantaneousprobability of abugbengfixed at any point
dunngitslife or equivalently thesurvival fundion, which is the percentage of bugsremaining
open. A plot of thesurvival over time for al bugsin our sample is shown in Figure 5. Theplot
shows that bugswith highe priorities are generally fixed more quickly, as expected, but some
bugsremain unfixed even after years.

1.0

0.8

'l

0.8

L

Survival Probability
0.4

0.2

0.0

T T T

T
0 120 360

T
600 840 1080

Days

Figure 5. Plot of bugsurvival vs. time for high (9), default (5) and low (1) priority bugs

Thehazard fundion (or more usudly thelog of thehazard fundion) can beused asa
dependent variable in aregression. For ourinitial purpo<e of developing a project-level measure
of bugfixing effectiveness, we smply entered project as afactor in the hazard regression along
with the bugpriority, allowing usto compute a hazard ratio for each project (ratio because of the
use of thelog of the hazard). The hazard ratios are the regression weights for the dummy variable
for each project in the hazard fundion, uang the first project asthebaseline Theandysiswas
performed usng the R-Project statistical system (http://www.r-project.org/), specifically the psm
fundion from the Survival and Design packages. We experimented with different fundiond
formsfor fitting thebug hazard rates. Somewhat surprisingly, the form that fitted best was an
exponentia (the R? for thefit was 0.51), tha is, one in which thehazard rateis nottime varying
Theeforethehazard ratio for each project is reported beow.

Popularity. The measures of project downloadsand page views tha had been extracted
from thedownloaded html pages were relatively smply to andyze. We log trandormed theraw
valuesto correct skew.

Our additiond measure of popukrity, indusonin adistribution, required additiond
andysis. Wefirst examined thelist of Debian packages manudly to match packages to the
projects in our SourceForge sample. To dothis for each project we examined the output of the
Debian apt - cache program, which searches package names and descriptionsand the
http://packages.debian.org/ site, which allows searching filenames within package contents. We
then examined the SourceForge homepages of the projects to be sure tha we had an accurate
match. For those tha were induded we observed tha oneproject was linked to oneor more
(sometimes many more) packages, but we did not observe many projects tha were packaged
togeher. As discussed above some of the projectsin our sample are not candidaes for induson
in the Debian distribution because they do nat runon Linuxwere notinduded in this measure.
For example, fink is apackage-management system for Mac OS X and Gnucleous isa
Windows client for the Gnutella network. We fourd tha there were 110 packages (out of 120,0r

92%) tha could beingalled and runon a Debian Linux system and 63 (57%) of these were
packaged and distributed by Debian, while 47 (43%) were not. One package was undegoing the
Debian qudity assurance process butwas not yet available throughthe standad ingalation
system and was therefore coded as notinduded. Projects with eligible programs that were
induded in Debian were given a score of 1 (or YES), and projects withoutinduded programs
were given a score of O (or NO), indigible projects were tagged with NA.

Results

Theresults of measuring these success measures across our sample of 120projects are
presented bdow. First we present descriptive statistics for theindividud measures and then
present the results of examining the correlationsbeween the measures. We condudeour results
discussion by reporting onthe practicality of our operationdizations Table 7 shows the
descriptive statistics for theindividud measures.

Table 7. Descriptive statistics for sample success measures.

Variable Mean Median SD
Lifespan (day9)? 1673 1699 198
Developasin 2001 8.63 7 7.20
Developasin 2002 1556 12 1122
Developasin 2003 18.19 12 1629
Developasin 2004 2006 14 1995
Developasin 2005 2022 14 2057
Weighted ddta (see text)? 1.60 0.72 3.26
Pogersto bugtracker® 140 86 207
Log bug$ 5.78 561 0.84
Closed bug$ 405 234 489
Log median buglifetime® 1444 1439 1.29
Hazard ratio® 1.13 1.10 1.04
Log downloads (all time)° 1129 1187 3.38
Log downloads (per day)® 432 4.44 224
Log pageviews (al time)® 1385 1415 2.14
Log pageviews (per day)” 6.45 6.74 212
Debian package? 63Yes 47 No 10NA

aN=120 ®"N=118

To examinethereationdhipsamongthe variables we measured, we examined the
correlations given in Table 8 and 9. 42 of the 136correlationsare statistically significant
indicating tha thereis a genuinerelationship. (With 120 cases and applying the Bonferonni
correction for the 136 compaisonspossible among 17 variables, thecritical valuefor
significance at p=0.05isr=0.32) Noneof the proposed success measures are correlated with
project lifespan, suggesting tha they do provide some indication of the performance of the
project rather than just accumulation of events.

Table 8. Correlationsamong sample success measures.

Lifespan
Developersin 2001
Developersin 2002
Developersin 2003
Developersin 2004
Developersin 2005
Weighted delta

Pastersto bug tracker

Log bugs
Closedbugs

Log medanbug lifetime

Hazardratio
Log downloads (all

time)

Log downloads (per day)

Log page views (all

time)

Lifespan

1.000
0.265
0.061
£0.016
£0.047
£0.042
£0.023
0.052
0.008
0.034
0.087
0.200
0.136
0.010
0.001

Log page views (perday) £0.060

Dehanpackage?

0.285

Developersin

Developersin

2002

Developersin

2003

Developersin

2004

Developersin

2005

Weighted delta

0.648
0.656

1.000
0.761
0.643

1.000
0.949

0.658

0.643

0.943

1.000
0.998

0.374

0.352

0.789

0.913

1.000
0.922

1.000

0.144
0.158
0.191
0.166
0.219
0.056
0.059
0.043
0.035
0.153

0.266

0.200

0.226

0.230

0.396

0.392

0.398

0.394

0.381

0.322

0.344

0.348

0.103
0.084
0.198
0.228
0.228
0.224
0.116

0.208
0.177
0.212
0.249
0.245
0.245
0.101

0.190
0.158
0.241
0.295
0.277
0.280
0.064

0.184
0.147
0.238
0.287
0.279
0.282
0.054

0.186
0.316
0.272
0.172
0.134
0.240
0.283
0.269
0.271
0.054

Bold and undelined correlationsare significant at p<0.05, usng a Bonferonni correction for the

number of correlations

Table 9. Correlationsamong sample success measures, continued.

= 0
Q =S
z. & 2
g5 o 2
g S 2 O
Pastersto bug tracker 1.000
Log bugs 0.592 1.000
Closedbugs 0.801 0.718 1.000
Log medanbug lifetime 0.179 0.087 0.232
Hazardratio 0.158 0.114 0.239
Log downloads (all time) 0.359 0.268 0.252
Log downloads (per day) 0.450 0.343 0.312
Log pageviews (all time) | 0.435 0.462 0.355
Log page views (per day) 0433 0463 0.354
Dehanpackage? 0.125 0.073 0.088

Log medanbug

lifetime

1.000
0.868
0.095
0.088
0.031
0.038
0.063

Hazardratio

1.000
0.068
0.017
0.146
0.160
0.115

[72] [72]
g & 3 3
o o - -
I T S
2 2% T2 B%
55 ©®T 9of oo
2= 23 F= %3
28 32 08 ogZ2
1.000
0.909 1.000
0.660 0.724 1.000
0.647 0.722 0.998 1.000
0.201 0.240 0.171 0.150

Thecount of nunbe of developeas at different paintsin time are correlated (the uppe
boxin Table 8), as would be expected given tha they conditute atime series. Thecouns are

also correlated with the computed weighted average of changesin developess. Interestingly, the
developea counts are also correlated to nunmber of bugsreported (thelower boxin Table 8). It
may betha develope's themselves pod bugreports and so more developas congitutes more
activity. Alternately, it may betha activity attracts developas. Aswell, the countof paticipants
in the bugtracker is correlated with number of bugs, but notwith number of listed developeas
(theuppe left boxin Table 9). Theserelationdhipssuggest tha individuds pog only afew bug
reports, so more bugreports implies a greater nunber of participants. The correlation between
pogers and the number of closed bugsis paticularly strong (r=0.718).

The count of downloadsand pageviews (all time and daly) areal strongly correlated
(thelower rightboxin Table 9), suggesting tha they offer similar measures of popukrity. They
are also correlated with the number of bugs(thelower left boxin Table 7b), and the countof
paticipantsin the bugtracker. These correlationstaken togeher suggest tha the countof
paticipants and number of bugsfundion more like indicationsof the popukrity of a FLOSS
project, rather than the success of its development processes. On the other hand, the hazard ratio
for buglifetimes and the median buglifetime are not significantly correlated with any of the
other variables, suggesting tha they do provide an independent view of a project@ performance.

Discussion

Thestudy provided ussful daafor reflecting on the conceptud modd for successin
FLOSS development developed in thefirst hdf of this pgper. Because many of these findings
reveal themselves as limitationsin our study, we first discuss these and attempt to distil general
advice for FLOSS research usng success as avariable.

Themeasures applied in this paper have goodface validity asindicators. Theandysis
presented aboveallows usto extend our examination of thevalidity and utility of the measures.
Thehigh correlation amongmany of these measures indicates a degree of convegent validity,
since thedifferent measures do correlate, particularly number of developas and populkrity.

Examining these correlationsand correlationswith other variables in more detail suggests
roomfor improvement in the measures. Clearly additiond daa could be collected to increase the
accuracy of thedevelopea couns. Furthermore our counts are merely aggregae measures that
may mask many develope's leaving and joining a project. These more specific counts would
enable usto determineif some projects are subject to significant @hurnGof individud
developes, or convasaly of the @enureCof individuds as develope's on projects. Such a
measure might be atheoretically more valuable, as it would have implicationsfor development
and retention of knowledge Aswith our andysis of buglifetime, such andyses would need to
employ event history statistics to accountfor theright-censored daa

Further possibilities for measuring develope paticipaion exist which may provide more
accurate and valuable measures. Such oppotunitiesindudemeasuring participationin mailing
lists and developa@ involvement in codewriting directly by examininglogsfromtheCVS
system. Each of these measures, however, suffers from the difficulty of inferring departure and
QenureCbecause it is possible to QurkGin each of these forums. For example, if adevelope is
observed to pog onaein 2003and again in 2005 was the develope aways a pat of the project,

or did thedevelope leave and re-join? It mightbeworth developing a measure of congstent
engagement butit would need to accountfor different paternsfor different individuds.

Another ingructive limitationisthat in building asample of projects to study, we seem to
have foundprojects tha seem to bemosgly successful, by and large Thiscan beseenina
compaison of the categorization of developea count series from our sample and from thewhole
Sourceforge popuktion. We divided the popuation of SourceForge projects into the same six
categories. Figure 6 shows a comparison of thedisgtribution of time seriesinto our categories
between our sample and thetotal SourceForge population. We required three periodsof daa
collection to calculate the category, so thefull populationindudes only 39,414 projects,
excluding 59,154 projects tha are either too new or already dead before our fourth measurement
point. The comparison shows tha our sample of 120 projects has a higha propottion of condant
risers and alower propottion of fallers and dead projects. Thedifference in thedistributonsis
highly significant (! > = 805, df=5, p<0.001) This result suggests that our sample, projects with
at least 7 developeas and 100bugsin April 2002 is comparatively successful, at least in terms of
attracting and retaining developas ove time.

Sourceforge all projects (n= 39255) Sourceforge sample (n= 120)
3 1
=
= -
= -~
= .
g -
> 2 7 > T 7
g - 2
v v
= -~ = (-]
- = > ~ ™
o = _J o
n 3 o
S -
=
=
7 =
o = [— I]
f T T T T I f T T T T]
1 2 3 - 5 6 | 2 3 - 5 6
Trend category (1 is Rising, 5 Falling, 6 dissolved) Trend category (1 is Rising, 5 Falling, 6 dissolved)

(There were 59313 with insufficient data points)
Figure 6. Changesin develope count pe project over time, categorized by trend.

As areault of thistendency in our data, the sample may not have sufficient variance on
success, affecting the observed correlationsreported above To address this concern, FLOSS
research should be aware tha selecting onthe basis of team size and process features, such as
use of the Sourceforgetrackers, risks selecting only successful projects and should therefore
make a speciad effort to collect daa on abroader rangeof projects, induding some tha seem
clearly to beunsuccessful. This advice istruefor quantitative research butis also relevant to case
study research; thereisareal need for detailed research on failed FLOSS projects.

A secondly indructive limitationis that we followed the standard butinadequae practice
of uang popukbrity measures unadjused for potential Mnarket sizeO A project@ downloadsare

cappel by their total potential downloads, their atential marketO A consumer-oriented
application, such as an ingant messaging client, is of potential usefulnessto amog al internet
users, whereas a program to modd subaomic particle collision (for example), has a much lower
potential market. While theingant messaging program might achieve only 40%of its potential
market its absolute number will befar highe than the number achieved by the particle collision
moddingtool, even if it isused and adored by 95% of high energy physcists. Thusdownload
figures withoutmarket share data are useful only if oneconsdesall programsto bein
competition with each other, i.e. ignores the project@ aims entirely. Some value can be salvaged
by usng relative growth figures ingead of the absnlute nunmbers. Within limited domains of
projectsit is possible to create categories of truly competing produds for which the abslute and
relative download numbers oughtto be a useable proxy for software use. Unfortunaely the self-
classification of produds on sites like Sourceforge (where &nd-user software(is an entire
categoty) is of little use and identification of competitors mus be by hand.

Furthermore our andysis revealed tha measures such as community size (in nunbers of
pogers) are more sSimilar to these populkrity measures than to the process measures. On
reflection community size should also be expected to be heavily influenced by the potential size
of theuser popuation, much more so than thesmaller developa numbes. A brief ingection of
our data on bugpoders affirms this: the projects with thelargest number of pogers are consumer
desktop applications such as gaim . Community size measures, therefore, should be adjuged in
the same way as downloadsand pageviews: by either uang within-project changes or by
manudly creating categories for competing projects.

This discussion draws attention to an element missing from our theory development
aboveand from FLOSS research in general. The phenomenonunde research, FLOSS and its
development, is generally, often implicitly, defined as any projects tha use an @pen source
liceneeQ(usudly defined as OS| approved licenses). Our selection of projects from Sourceforge
also implicitly uses this definition of the phenomenon; Sourceforge only allows projects usang
these licenses to register with thesite. Therisk hereistha there are awiderangeof Information
Systemstypes, developea gods, software devel opment processes, management styles and group
structures al of which are compatible with usngan OSI approved license. It is notyet clear
uponwhat characteristics the phenomenon should be divided butit is clear tha the meaning of
success for different types of projects, programs, motivationsand processes will be quite
different.

This observationis similar to tha made by Seddoner a/ (1999) who introduce the OS
Effectiveness MatrixQ They suggest that two key dimensonson which to base success measures
are Qhetype of system studiedGand Qhe stakeholder in whoe interests the system is beng
evaluaedO FL OSS devel opment typically occurs outside the corporate environments in which
stakeholders are explicit and are dominated by thefinanda results of the|S development.
However, this does not mean tha there are nat stakeholders, such as core develope's, peipheal
developeas, corporate users, individud users, and other whole projects tha depend on the project
who success oneistrying to measure. Thetheory presented in this pgper intentiondly provides
amuch greater emphasis on theinput and the process of IS system development, and thusthe
developes, than traditiond 1S modds of success, and so studies utilizing success in the FLOSS
context should closely consder both the phenomenonthey are interested in (and thusrelevant
projects) and from which perspective they need to measure success, given thar research

interests. The development of ataxonony of research interests and the identificationsof the
portionsof the FLOSS universe appropriate for thar study would be a useful task for future
research.

Conclusion

This pgoe makes a contribution to the developing body of empirical research on FLOSS
by identifying and operationdizing success measures tha might beapplied to FLOSS. We
developead and presented atheoretically informed rangeof measures which we think are
appropriate for measuring the success of FLOSS projects and we hopetha these will be ussful to
researchesin thedeveloping body of empirical research on FLOSS development. We
complemented this theory development throughan empirical study tha demondrated methods
and chdlengesin opeaationdizing success measures usng data obtained from Sourceforge and
made available to the community. This study demondrated the portfolio approach to success
measurement by taking measures from throughoutthe FL OSS devel opment process and by usng
longitudind daa. Thestudy allowed usto identify and communicate thelimitationsof our
theory development and to elaborate areas tha require particular care for researchersin this area.

We emphasize agan tha we do notview any single measure as thefind word on
success. As the measures draw on different aspects of thedevelopment process, they offer
different perspectives on the process. Induding multiple measuresin a portfolio and careful
congderation which measures are mog appropriate for the researcher@ current research question
should provide a better assessment of the effectiveness of each project.

While FLOSS isimportant @or its own sakeQit is dso aform of Information systems
development growing inimportance. Thereissubgantia interest in learning from FLOSS but
such learning can only proceed when thereis a firm undestanding of the phenomenon, and
undestanding when it isworking well isacrudal first step. Our future work indudes more
detailed andysis of both effective and ineffective projects. We plan to employ atheoretical
sampling strategy based on a portfolio of relevant success measures to choo® afew FLOSS
development teams to study in depth, usng both quantitative and quditative research methods
By limiting the nunmber of projects, we will be able to use more labor-intensve data andysis
approaches to shed more light on the practices of effective FLOSS teams.

References

Arent, J, & N¢tbjerg, J. (2000. Software Process Improvement as Organizational Knowledge
Creation: A Multiple Case Analysis. Paper presented at the Proceedingsof the 33rd
Hawaii Internaiond Conference on System Sciences.

Basli, V. R, Cddiera G., & Rombach, H. D. (19%). God question metric paradigm. In J. J.
Marciniak (Ed.), Encyclopedia of Software Engineering (Vol. 1, pp. 5285632). New
York: JohnWiley.

Boehm, B. W., Brown, J. R., & Lipow, M. (1976. Quantitative evaluaion of software qudity. In

Proceedings of the 2nd International Conference on Software Engineering, October 13-
15 (pp.5922605) San Frandsco, CA.

Butler, B., Sproull, L., Kieder, S., & Kraut, R. (2002). Community effort in onlinegroups Who
doesthework andwhy?In S. Weisband & L. Atwater (Eds), Leadership at a Distance.
Mahwah, NJ: Lawrence Erlbaum.

Chawla, S., Arunasalam, B., & Davis, J. (2003) Mining Open Source Software (OSS) Data
usng Assodation Rules Network. In Proceedings of the 7th Pacific Asia Conference on
Knowledge Discovery and Data Mining (PACDD) (pp.461-466)

Conklin, M. (2004). Do the Rich Get Richer?: The Impact of Power Laws on Open Source
Development Projects. Paper presented at the Proceedingsof Open Source 2004
(OSCON).

Crowston, K., Annabi, H., Howison, J., & Masango, C. (2004) Effective work practices for
Software Engineering: Free/Libre Open Source Software Development. Paper presented
at the WISER Workshopon Interdisciplinary Software Engineering Research, SIGSOFT
2004FSE-12 Conference,, Newport Beach, CA.

Crowston, K., & Scozzi, B. (2002. Open source software projects as virtud organizations
Competency rallying for software development. /EE Proceedings Software, 149(1), 3P17.

Davis, A. M. (1990. Software Requirements Analysis and Specification. Englewood Cliffs, NJ:
Prentice-Hall.

Davis, F. D. (1989) Perceived ussfulness, perceived ease of use and user acceptance of
information technology. MIS Quarterly, 13, 3198840.

DelLone W. H., & McLean, E. R. (1992) Information Systems Success. The Quest for the
Dependent Variable. Information Systems Research, 3(1), 60E95.

DeLone W. H., & McLean, E. R. (2002) Information systems success revisited. Paper presented
at the Proceedingsof the 35th Hawaii Internaiond Conference on System Sciences.

DelLone W. H., & McLean, E. R. (2003) The DelLoneand McLean modd of information
systems success. aten-year updae. J. Manage. Inform. Syst., 19(4), 9-30.

Diaz, M., & Sligo, J. (1997) How software process improvement hd ped Motorola. /EEE
Software, 14(5), 75E81.

Ewug-Mensh, K. (1997). Critical issuesin abandonad information systems devel opment
projects. Communication of the ACM, 40(9), 74E80.

Ghodh, R. A. (2002. Free/Libre and Open Source Software: Survey and Study. Report of the
FLOSS Workshopon Advandng the Research Agendaon Free / Open Source Software.
from http://www.infonomcs.nl/FL OSS/report/workshopreport.htm

Giuri, P., Plone, M., Rullani, F., & Torris, S. (2004). Skills and openness of OSS projects:
Implications for performance (Working pgpe). Pisa, Italy: Laboratory of Economcs and
Management, Sant AnnaSchool of Advanced Studies.

Gonztlez-Barahong J. M., & Robles, G. (2003) Free Software Engineering: A Field to Explore.
Upgrade, 4(4), 49E64.

Goranson, H. T. (1997). Design for Agility Using Process Complexity Measures. Agility &
Global Competition, 1(3), 1E8.

Gorton, 1., & Liu, A. (2002) Software component qudity assessment in practice: Successes and
practical impediments. In Proceedings of the 24th International Conference on Software
Engineering (pp.555E658) Orlandg FL.

Grant, R. M. (1996) Toward a knowledgebased theory of thefirm. Strategic Management
Journal, 17(Winter), 1099122

Guinan, P. J.,, Cooprider, J. G., & Farg, S. (1998) Enabling software development team
performance during requirements definition: A behavioral versustechnica approach. Inf.
Syst. Res., 9(2), 101-125.

Hackman, J. R. (1987) Thedesign of work teams. In J. W. Lorsch (Ed.), The Handbook of
Organizational Behavior (pp.319842). Engewood Cliffs, NJ: Prentice-Hall.

Hann, |.-H., Robets, J., Slaughter, S, & Fieding, R. (2002) Econonic incentives for
paticipaing in open source software projects. In Proceedings of the Twenty-Third
International Conference on Information Systems (pp. 3655872)

Hann,|.-H., Robats, J.,, & Slaughtr, S. A. (2009. Why developers participate in open source
software projects: An empirical investigation. Paper presented at the Twenty-Fifth
Internaiond Conference on Information Systems, Washington, DC.

Hertel, G., Korradt, U., & Orlikowski, B. (2004) Managing distance by interdependence: God
setting, task interdependence, and team-based rewardsin virtud teams. European
Journal of Work & Organizational Psychology, 13(1), 1-28.

Howison, J., Conklin, M. S,, & Crowston, K. (2005, 11B14 July). OSSmole: A collaborative
repository for FLOSS research data and analyses. Paper presented at the 14 Internaiond
Conference on Open Source Software, Genova Italy.

Jackson, M. (1995) Sofiware Requirements and Specifications: Practice, Principles, and
Prejudices. Bogon, MA: Addison-Wesley.

Kelty, C. (200]). Free Software/Free Science. First Monday, 6(12).

Krishnanurthy, S. (2002) Cave or Community? An Empirical Examination of 100 Mature Open
Source Projects. Bothdl, WA: University of Washington, Bothdl.

Lakhani, K. R., & Wolf, B. (2003. Why Hackers Do Wha They Do: Undestanding Motivation
and Effort in Free/Open Source Software Projects. Retrieved 1 March, 2005 from
http://opensource.mit.edufpgpes/lakhaniwolf.pdf

Lerner, J.,, & Tirole, J. (2000. The Simple Economics of Open Source (No. NBER Working
Paper w7600} The Nationd Bureau of Economic Research, Inc.

Mishra, B., Prasad, A., & Raghundhan, S. (2002) Qudity and profits unde open source versus
closed source. In Proceedings of the Twenty-Third International Conference on
Information Systems (pp. 349863).

Mockus A., Fielding,R. T., & Herbdeb, J. D. (2000). 4 case study of Open Source Software
development: The Apache server. Paper presented at the Proceedingsof thelnternaiond
Conference on Software Engineering (ICSEQ000Q.

Ral, A.,Lang, S. S, & Welker, R. B. (2002. Assessing the validity of IS success modds. An
empirical test and theoretical andysis. Information Systems Research, 13(1), 50B69.

Raymond, E. S. (1998) Thecathedral andthe bazaar. First Monday, 3(3).

Reis, C. R., & Fortes, R. P. d. M. (2002. An Overview of the Software Engineering Process and
ToolsintheMozllaProject. Retrieved 1 March, 2005,from
http://opensource.mit.edufpagpes/reismozllapdf

Scacchi, W. (2002) Undestanding therequirements for developing Open Source Software
systems. [EE Proceedings Software, 149(1), 24E89.

Schach, S. R., Jin, B., Héeller, G. Z., & Offutt, A. J. (20033. Determining the Distribution of
Maintenance Categories. Survey versusEmpirical Study. Retrieved 14 Dec, 2003,from
http://www.vuse.vandebilt.eduRb67Esrs/preprinty/Ist.preprint.pdf

Schach, S. R., Jin, B., Wright, D. R., Heller, G. Z., & Offutt, A. J. (2003b) Maintainability of the
LinuxKernd. Retrieved 14 Dec, 2003 from
http://lwww.vuse.vandebilt.eduPo67Esrg/preprintdlinuxlongitudind. preprint.pdf

Seddon,P. B. (1997). A Respecification and Extension of the Del.oneand McLean modd of IS
Success. Information Systems Research, 8(3), 240-253.

Seddon,P. B., Staples, S, Patnayakuni, R., & Bowtell, M. (1999) Dimendonsof information
systems success. Communications of the Association for Information Systems, 2(20), 61

pages.

Shakh, M., & Cornford, T. (2003. Verson Management Tools: CVSto BK intheLinux
Kernd. Retrieved 1 March, 2005 from
http://opensource.mit.edufpgpers/shakhcornford.pdf

Shenha, A. J, Dvir, D., Levy, O., & Mdltz, A. C. (2001) Project success: A multidimensond
strategic conaept. Long Range Planning, 34, 6997 25.

Stamelos I., Angdis, L., Oikononouy, A., & Bleris, G. L. (2002) Codequdity andysisin open
source software development. Information Systems Journal, 12(1), 43560.

Stewart, K. J., & Ammeter, T. (2002) An exploratory study of factors influencing the level of
vitality and popularity of open source projects. Paper presented at the Proceedingsof the
Twenty-Third Internationd Conference on Information Systems.

Stewart, K. J., & Gosain, S. (2004) Thelmpact of Ideology on Effectivenessin Open Source
Software Development Teams. Retrieved 1 March, 2005 from
http://opensource.mit.edufpapes/stewartgosain.pdf

