
Investigating the Dynamics of
Open Source Software Development Teams

Research on human and social behavior is increasingly characterized by a focus on dynam-
ics—on the evolution of formal and informal organizations over time. We propose a social sci-
ence study in the context of distributed teams of Free/Libre Open Source (FLOSS) software
developers to better understand the cognitive and social structures that underlie changes in indi-
vidual and team behaviours in these teams. Our study addresses the general research question:
What are the dynamics through which distributed teams develop and work?

Increasingly, organizational work is performed by distributed teams of interdependent
knowledge workers. These teams have many benefits, but the distance between members creates
challenges for team members to create the shared understandings and social structures necessary
to be effective. But as yet, research and practitioner communities know little about the dynamics
of developing distributed teams.

To answer our research question, we will conduct a longitudinal in-depth study identifying
and comparing the formation and evolution of distributed teams of FLOSS developers. The pro-
posed research will be guided by an advisory board of FLOSS developers to ensure relevance
and to help promote diffusion of our findings into practice. We will study how these distributed
groups develop shared mental models to guide members’ behavior, roles to mediate access to
resources, and norms and rules to shape action, as well as the dynamics by which independent,
geographically-dispersed individuals are socialized into teams. As a basis for this study, we de-
velop a conceptual framework that uses a structurational perspective to integrate research on
team behaviour, organizational learning, communities of practice and shared mental models. We
will utilize qualitative data analysis of team interactions, observation and interview data to in-
vestigate these dynamics. We will also use social network analysis to study the socialization
process of members and change in roles over time.

Expected intellectual contributions
The study will have conceptual, methodological as well as practical contributions. Develop-

ing an integrated theoretical framework to understand the dynamics of a distributed team will be
a contribution to the study of distributed teams. Understanding the dynamics of structure and ac-
tion in these teams is important to improve the effectiveness of FLOSS teams, software devel-
opment teams, and distributed teams in general. The project will contribute to advancing
knowledge and understanding of FLOSS development and distributed work more generally by
identifying how these teams evolve and how new members are socialized. The study fills a gap
in the literature with an in-depth investigation of the practices adopted by FLOSS teams based on
a large pool of data and a strong conceptual framework. As well, we will use several different
techniques to analyze the practices, providing different perspectives of analysis and a more reli-
able portrait of what happens in the development teams.

Expected broader impacts

If successful, the project will benefit society by describing learning for FLOSS development,
an increasingly important approach to software development. The study will also shed light on
learning in distributed work teams in general, which will be valuable for managers who intend to
implement such an organizational form. Findings from the study might also be used to enhance
the way information and communication technologies (ICT) are used to support distance educa-
tion or for scientific collaboration, which are emerging applications of distributed teams. In order
to improve infrastructure for research, we plan to make the tools and raw data available to other
researchers. As well, the project involves an international collaboration. Such exchanges expand
the perspectives, knowledge and skills of both groups of scientists. Finally, the project will pro-
mote teaching, training, and learning by providing graduate and undergraduate students an op-
portunity to work in teams, integrate their competencies and develop new skills in data collection
and analysis.

TABLE OF CONTENTS
For font size and page formatting specifications, see GPG section II.C.

 Total No. of Page No.*
Pages (Optional)*

Cover Sheet for Proposal to the National Science Foundation

 Project Summary (not to exceed 1 page)

 Table of Contents

 Project Description (Including Results from Prior

NSF Support) (not to exceed 15 pages) (Exceed only if allowed by a
specific program announcement/solicitation or if approved in
advance by the appropriate NSF Assistant Director or designee)

 References Cited

 Biographical Sketches (Not to exceed 2 pages each)

 Budget
(Plus up to 3 pages of budget justification)

 Current and Pending Support

 Facilities, Equipment and Other Resources

 Special Information/Supplementary Documentation

 Appendix (List below.)

(Include only if allowed by a specific program announcement/
solicitation or if approved in advance by the appropriate NSF
Assistant Director or designee)

Appendix Items:

*Proposers may select any numbering mechanism for the proposal. The entire proposal however, must be paginated.
Complete both columns only if the proposal is numbered consecutively.

1

1

15

7

2

5

1

1

15

1

Investigating the Dynamics of
Open Source Software Development Teams

Research on human and social behavior is increasingly characterized by a focus on dynam-
ics—on the evolution of formal and informal organizations over time. We propose a social sci-
ence study in the context of distributed teams of software developers to better understand the
cognitive and social structures that underlie changes in individual and team behaviours in these
teams. We will address the general research questions:

What are the dynamics through which members of distributed ICT-supported teams of
Open Source Software developers form shared mental models, individual roles, informal
norms and formal rules and how do these structures guide their behaviours?

The proposed research will be guided by an advisory board of FLOSS developers to ensure
relevance and to help promote diffusion of our findings into practice.

Revolutionary technologies and ideas have created a more closely linked world with almost
instantaneous transmission of information to feed a global economy. A prominent example of
this transformation is the emergence of Free/Libre Open Source Software (FLOSS, e.g., Linux or
Apache), created by distributed dynamic teams of volunteers and professionals working in
loosely coupled teams. FLOSS is a broad term used to embrace software developed and released
under an “open source” license allowing inspection, modification and redistribution of the soft-
ware’s source without charge (“free as in beer”). Much (though not all) of this software is also
“free software”, meaning that derivative works must be made available under the same unre-
strictive license terms (“free as in speech”, thus “libre”). We have chosen to use the acronym
FLOSS rather than the more common OSS to emphasize this dual meaning. There are thousands
of FLOSS projects, spanning a wide range of applications. Due to their size, success and influ-
ence, the Linux operating system and the Apache Web Server (and related projects) are the most
well known, but hundreds of others are in widespread use, including projects on Internet infra-
structure (e.g., sendmail, bind), user applications (e.g., Mozilla, OpenOffice) and programming
languages (e.g., Perl, Python, gcc). Many are popular (indeed, some dominate their market seg-
ment) and the code has been found to be generally of good quality [2].

Key to our interest is the fact that most FLOSS software is developed by distributed teams.
Developers contribute from around the world, meet face-to-face infrequently if at all, and coor-
dinate their activity primarily by means of computer-mediated communications (CMC) [3,4].
These teams depend on processes that span traditional boundaries of place and ownership. The
research literature on software development and on distributed work emphasizes the difficulties
of distributed software development, but the case of FLOSS development presents an intriguing
counter-example. What is perhaps most surprising about the FLOSS process is that it appears to
eschew traditional project coordination mechanisms such as formal planning, system-level de-
sign, schedules, and defined development processes [5]. As well, many (though by no means all)
programmers contribute to projects as volunteers, without working for a common organization or
being paid. Characterized by a globally distributed developer force and a rapid and reliable soft-
ware development process, effective FLOSS development teams somehow profit from the ad-
vantages and overcome the challenges of distributed work [6]. The “miracle of FLOSS
development” poses a real puzzle and a rich setting for researchers interested in the work prac-
tices of distributed teams.

As well, FLOSS development is an important phenomena deserving of study for itself.
FLOSS is an increasingly important commercial phenomenon involving all kinds of software
development firms, large, small and startup. Millions of users depend on systems such as Linux
and the Internet (heavily dependent on FLOSS tools), but as Scacchi [7] notes, “little is known
about how people in these communities coordinate software development across different set-
tings, or about what software processes, work practices, and organizational contexts are neces-
sary to their success”. As evidenced by the attached letters of support from FLOSS developers,

2

members of the FLOSS community are themselves interested in understanding and documenting
effective practices and teams so as to improve their performance.

The remainder of this proposal is organized into four sections. In section 1, we present the re-
search setting and discuss the challenges faced by FLOSS teams. In section 2, we develop a con-
ceptual framework for our study, drawing on theories of shared mental models [8,9] and
organizational learning [10,11], and using structuration theory [1] as an organizing framework.
In section 3, we present the study design, with details of the data collection and analysis plans.
We conclude by sketching the intellectual merits and expected broader impacts of our study and
reviewing the results of prior support.

1. The challenge of distributed software development
Distributed teams are groups of geographically dispersed individuals working together over

time towards a common goal. Though distributed work has a long history [e.g., 12], advances in
information and communication technologies have been crucial enablers for recent developments
of this organizational form [13]. Distributed teams seem particularly attractive for software de-
velopment because the code can be shared via the systems used to support team interactions
[14,15]. While distributed teams have many potential benefits, distributed workers face many
real challenges. Watson-Manheim, Chudoba, & Crowston [16] argue that distributed work is
characterized by numerous discontinuities: a lack of coherence in some aspects of the work set-
ting (e.g., organizational membership, business function, task, language or culture) that hinders
members in making sense of the task and of communications from others [17], or that produces
unintended information filtering [18] or misunderstandings [19]. These interpretative difficulties
in turn make it hard for team members to develop shared mental models of the developing pro-
ject [20,21]. A lack of common knowledge about the status, authority and competencies of team
participants can be an obstacle to the development of team norms [22] and conventions [23].

The presence of discontinuities seems likely to be particularly problematic for software de-
velopers [17]. Numerous studies of the social aspects of software development teams [17,24-27]
conclude that large system development requires knowledge from many domains, which is thinly
spread among different developers [24]. As a result, large projects require a high degree of
knowledge integration and the coordinated efforts of multiple developers [28]. More effort is re-
quired for interaction when participants are distant and unfamiliar with each others work [29,30].
The additional effort required for distributed work often translates into delays in software release
compared to traditional face-to-face teams [31,32]. The problems facing distributed software de-
velopment teams are reflected in Conway’s law, which states that the structure of a product mir-
rors the structure of the organization that creates it. Accordingly, splitting software development
across a distributed team will make it hard to achieve an integrated product [5].

In response to the problems created by discontinuities, studies of distributed teams stress the
need for a significant amount of time spent learning how to communicate, interact and socialize
using computer-supported communications tools [33]. Research has shown the importance of
formal and informal coordination mechanisms and information sharing [25] for a project’s per-
formance and quality. Communication can help clarify potential uncertainties and ambiguities
and socialize members with different cultures and approaches into a cohesive team [34-38]. Suc-
cessful distributed teams share knowledge and information and create new practices to meet the
task and social needs of the members [39]. However, the dynamics of knowledge sharing and
socialization for distributed teams are still open topics for research [e.g., 40].

Research on FLOSS development

The nascent research literature on FLOSS has addressed a variety of questions. First, re-
searchers have examined the implications of FLOSS from economic and policy perspectives. For
example, some authors have examined the implications of free software for commercial software
companies or the implications of intellectual property laws for FLOSS [e.g., 41,42,43]. Second,
various explanations have been proposed for the decision by individuals to contribute to projects
without pay [e.g., 44,45-48]. These authors have mentioned factors such as personal interest,

3

ideological commitment, development of skills [49] or enhancement of reputation [48]. Finally, a
few authors have investigated the processes of FLOSS development [e.g., 3,50], which is the fo-
cus of this proposal.

Raymond’s [3] bazaar metaphor is perhaps the most well-known model of the FLOSS proc-
ess. As with merchants in a bazaar, FLOSS developers are said to autonomously decide how and
when to contribute to project development. By contrast, traditional software development is lik-
ened to the building of a cathedral, progressing slowly under the control of a master architect.
While popular, the bazaar metaphor has been broadly criticized. According to its detractors, the
bazaar metaphor disregards important aspects of the FLOSS process, such as the importance of
project leader control, the existence of de-facto hierarchies, the danger of information overload
and burnout, and the possibility of conflicts that cause a loss of interest in a project or forking
[51,52]. Recent empirical work has begun to illuminate the structure and function of FLOSS de-
velopment teams. For example, Gallivan [53] analyzes descriptions of the FLOSS process and
suggests that teams rely on a variety of social control mechanisms rather than on trust.

The other major stream of research examines factors for the success of FLOSS in general
(though there have been few systematic comparison across multiple projects, e.g., [54]). The
popularity of FLOSS has been attributed to the speed of development and the reliability, port-
ability, and scalability of the resulting software as well as the low cost [55-61]. In turn, the qual-
ity of the software and speed of development have been attributed to two factors: that developers
are also users of the software and the availability of source code. First, FLOSS projects often
originate from a personal need [62,63], which attracts the attention of other users and inspire
them to contribute to the project. Since developers are also users of the software, they understand
the system requirements in a deep way, eliminating the ambiguity that often characterizes the
traditional software development process: programmers know their own needs [64]. (Of course,
over-reliance on this mode of requirements gathering may also limit the applicability of the
FLOSS model.) Second, in FLOSS projects, the source code is open to modification, enabling
users to become co-developers by developing fixes or enhancements. As a result, FLOSS bugs
can be fixed and features evolved quickly. Active users also play an important role [65]. Re-
search suggests that more than 50 percent of the time and cost of non-FLOSS software projects is
consumed by mundane work such as testing [66]. The FLOSS process enables hundreds of peo-
ple to work on these parts of the process [67].

The studies of FLOSS teams and of distributed teams more generally point to the need to un-
derstand the dynamics of their work. In their study of distributed cross-functional teams, Robey
et al. [39] suggest that to be successful, distributed teams must share knowledge and information
and create new practices to meet the task and social needs of the members of the team. More
generally, an organization’s capability to learn has been recognized as a core competency neces-
sary for survival and competition in a knowledge-based economy [10,68]. The better an organi-
zation is at learning, the better it can be at adapting to the environment, correcting for error, and
innovating [69]. Accordingly, to minimize the negative effects of being distributed, FLOSS
teams have to learn to communicate, coordinate and create a cohesive whole. However, research
and practitioner communities know little about the processes of knowledge sharing, learning and
socialization suitable for distributed teams [39,40]. Thus it is important for us to first understand
the dynamics of these teams and of their learning proceses. As Maier, et al. say, “Knowledge
about the process, or the know how, of learning facilitates corrections that simulate or accelerate
learning” [10].

2. Conceptual development

In this section we develop the conceptual framework for our study. We have chosen to ana-
lyze developers as comprising a work team. Much of the literature on FLOSS has conceptualized
developers as forming communities, which is a useful perspective for understanding why devel-
opers choose to join or remain in a project. However, for the purpose of this study, we view the
projects as entities that have a goal of developing a product, whose members are interdependent
in terms of tasks and roles, and who have a user base to satisfy, in addition to having to attract

4

and maintain members. These aspects of FLOSS projects suggest analyzing them as work teams.
Guzzo and Dickson [70] defined a work team as “made up of individuals who see themselves
and who are seen by others as a social entity, who are interdependent because of the tasks they
perform as members of a group, who are embedded in one or more larger social system (e.g.,
community, or organization), and who perform tasks that affect others (such as customers or co-
workers)”.

A structurational perspective on team dynamics

To conceptualize the dynamics of these teams and the process of changes within them, we
adopt a structurational perspective. Numerous authors have used a structurational perspective to
support empirical analyses of group changes [71-75]. A discussion of the merits of each use is
beyond the scope of this application. Here, we build on the view of structuration presented by
Orlikowski [72] and Barley and Tolbert [1].

Structuration theory [76] is a broad sociological theory that seeks to unite action and struc-
ture and to explain the dynamic of their evolution. We chose this framework because it provides
a dynamic view of the relations between team and organizational structures and the actions of
those that live within, and help to create and sustain, these structures. The theory is premised on
the duality of structures, that is, systems of signification, domination and legitimation that influ-
ence individual action. In this view, structure is recursive: the structural properties of a social
system are both the means and the ends of the practices that constitute the social system. As
Sarason [77] explains, in structuration theory:

“The central idea is that human actors or agents are both enabled and constrained by structures,
yet these structures are the result of previous actions by agents. Structural properties of a social
system consist of the rules and resources that human agents use in their everyday interaction.
These rules and resources mediate human action, while at the same time they are reaffirmed
through being used by human actors or agents.” (p. 48).

Simply put, by doing things, we create the way to do things.
By relating structure and function across time, structuration theory provides a framework for

understanding the dynamics of a team [78]. Barley and Tolbert [1] note that structuration is “a
continuous process whose operations can be observed only through time” (p. 100). Figure 1,
adapted from [1] shows the relation between institution (which the authors use synonymously
with structure) and action, and how both evolve over time. In this figure, the two bold horizontal
lines represent “the temporal extensions of Giddens’ two realms of social structure: institutions
and action,” while the “vertical arrows represent institutional constraints on action” and the di-
agonal arrows, “maintenance or modification of the institution through action” (p.100). As Cas-
sell [79] says, “to study the structuration of a social system is to study the ways in which that
system, via the application of generative rules and resources, in the context of unintended out-
comes, is produced and reproduced through interaction” (p. 119). Thus, our analysis will de-
scribe current team practices (the lower arrow) and current team structures (the upper arrow) and
how these interact (the vertical and diagonal arrows) and change over time. In order to explain

Figure 1. A sequential model of the relation between structure and action [from 1].

5

how the teams are evolving, we present the changes as states or stages (e.g., T1, T2 and T3 in the
figure) and highlight the “dislocation of routines” and other temporal disruptions that lead to
these different states [78].

Corporate participation and the process of structuration

The structuration perspective also makes clear the importance of any initial structures that
individual team members bring from prior experiences (i.e., from an unseen T0 in the figure).
Barley and Tolbert [1] note that “actors are more likely to replicate scripted behaviours” than to
develop new ones. Orlikowski and Yates [80] argue similarly, suggesting that in a new situation
individuals will typically draw on their existing repertoires of actions, reproducing those they
have experienced as members of other communities. These prior experiences will provide an ini-
tial set of structures that guide behaviours, which will be particular important during the forma-
tive stages of the team. Because of the importance of these initial structures, we are particularly
interested in the effects of corporate participation on FLOSS teams. We hypothesize that teams
with strong corporate participation will adopt structures from the surrounding corporate milieu,
thus influencing their evolution.

The importance of corporate participation is reinforced by other research. For example,
Hackman’s [81] model of group performance suggests organizational context as an important
factor affecting team processes. Finholt and Sproull [82] found that teams who do not work
within a specific organizational context have a greater need for team learning. These results have
been also been supported by our initial interviews with FLOSS developers, who see corporate
participation having an effect on team processes and activities.

Conceptualizing structuration in FLOSS teams

To apply structuration as a perspective to conceptualize the dynamics of distributed FLOSS
teams, we first must clarify the types of rules and resources that comprise the structure. For this
work, we specifically consider three kinds of rules and resources that are “encoded in actors’
stocks of practical knowledge” [1] in the form of interpretive schemes, resources, and norms
[1,83]. In the remainder of this section, we elaborate each of these three aspects of structure as
they apply to FLOSS development in particular.

Interpretive schemes and structures of signification. Individual actors’ interpretive schemes
create structures of signification and thus influence (and are created by) individual actions. To
describe how these schemes influence action and vice versa, we draw on the literature on the role
of shared mental models in team action. Shared mental models, as defined by Cannon-Bowers et
al. [84], “are knowledge structures held by members of a team that enable them to form accurate
explanations and expectations for the task, and in turn, to coordinate their actions and adapt their
behavior to demands of the task and other team members” (p. 228). Without shared mental mod-
els, individuals from different teams or backgrounds may interpret tasks differently based on
their backgrounds, making collaboration and communication difficult [85]. The tendency for in-
dividuals to interpret tasks according to their own perspectives and predefined routines is exac-
erbated when working in a distributed environment, with its more varied individual settings.

Research on software development in particular has identified the importance of shared un-
derstanding in the area of distributed software development, as in the case of FLOSS teams [86].
Curtis et al. [20], note that, “a fundamental problem in building large systems is the development
of a common understanding of the requirements and design across the project team.” They go on
to say that, “the transcripts of team meetings reveal the large amounts of time designers spend
trying to develop a shared model of the design”. The problem of developing shared mental mod-
els is likely to be particularly affect FLOSS development, since FLOSS team members are dis-
tributed, have diverse backgrounds, and join in different phases of the software development
process. In short, shared mental models are important as guides to effective individual contribu-
tions to, and coordination of the software development process.

In emphasizing the duality of structure, the structurational perspective draws our attention to
how shared mental models are products of, as well as guides to, action. Walton and Hackman

6

[87] identify an interpretive function of teams, which is to help members create a consistent so-
cial reality by developing shared mental models. To identify specific actions that can help to
build shared mental models, we turn to Brown and Duguid [88], who identify the importance of
socialization, conversation and recapitulation. First, new members joining a team need to be so-
cialized into the team to understand how they fit into the process being performed. They need to
be encouraged and educated to interact with one another to develop a strong sense of “how we
do things around here” (e.g., norms). Barley and Tolbert [1] similarly note that socialization fre-
quently “involves an individual internalizing rules and interpretations of behaviour appropriate
for particular settings” (p. 100). Second, conversation is critical in developing shared mental
models. It is difficult to build shared mental models if people do not talk to one another and use
common language. Meetings, social events, hallway conversations and electronic mail or
conferencing are all ways in which team members can get in touch with what others are doing
and thinking. Finally, Brown and Duguid [88] stress the importance of recapitulation. To keep
shared mental models strong and viable, important events must be “replayed”, reanalyzed, and
shared with newcomers. The history that defines who we are and how we do things around here
must be continually reinforced, reinterpreted, and updated.

Most studies on shared mental models remain conceptual [89]. The few empirical studies
[e.g., 86,90] investigated the relationship between team or organizational factors and the pres-
ence of shared mental models. This study will investigate the process through which distributed
teams develop shared mental models. This will be accomplished through the analysis of interac-
tion data for evidence of conversations, recapitulation of implicit and explicit rules and ideas
about task, team members, attitudes, and beliefs.

Resources and structures of domination. The control of resources is the basis for power and
thus for structures of domination. For software development, material resources would seem to
be less relevant, since the work is intellectual rather than physical and development tools are
readily available, thanks to openly available FLOSS development systems such as SourceForge
(http://sourceforge.net/) and Savannah (http://savannah.gnu.org/). Furthermore, most FLOSS
teams have a stated ethos of open contribution. However, team members face important differ-
ences in access to expertise and control over system source code in particular. To understand the
role of these sorts of resources, we plan to examine different roles in the software development
process and how they affect individual contributions, and how these roles are established and
maintained.

Several authors have de-
scribed FLOSS teams as
having a hierarchical or on-
ion-like structure [91-93], as
shown in Figure 2. At the
centre are the core developers,
who contribute most of the
code and oversee the design
and evolution of the project.
Core developers are distin-
guished by having write
privileges on the source code
The core is usually small and
exhibits a high level of inter-
action, which would be diffi-
cult to maintain if the core
group were large. Surrounding the core are co-developers. These individuals contribute sporadi-
cally by reviewing or modifying code or by contributing bug fixes. The co-developer group can
be much larger than the core, because the required level of interaction is much lower. Surround-
ing the developers are the active users: a subset of users who use the latest releases and contrib-
ute bug reports or feature requests (but not code). Still further from the core are the passive users.

Core developers

Co-developers

Active users

Passive users

Initiator

Release
coordinator

Figure 2. Hypothesized FLOSS development team structure.

7

The border of the outer circle is indistinct because the nature and variety of FLOSS distribution
channels makes it difficult or impossible to know the exact size of the user population.

As their involvement with a project changes, individuals may move from role to role. For ex-
ample, a common pattern is for active users to be invited to join the core development team in
recognition of their contributions and ability. In some teams, this selection is an informal process
managed by the project initiator, whiles others have formal voting processes for vetting new
members. However, core developers must have a deep understanding of the software and the de-
velopment processes, which poses a significant barrier to entry [94,95]. This barrier is particu-
larly troubling because of the reliance of FLOSS projects on volunteer submission and “fresh
blood” [96]. These characteristics again emphasize the importance of socialization and move-
ment of individuals through roles in the projects.

Rules and norms and structures of legitimation. Finally, actors’ social norms and team rules
embody structures of legitimation. The regulative function of teams, as presented by Walton and
Hackman [87], describes one aspect of team functions as the creation of rules, implicit and ex-
plicit. To conceptualize this aspect of teams, we also draw on Swieringa and Wierdsma’s [97]
description of organizations as collections of implicit and explicit rules that guide member be-
haviours. Implicit rules are team norms, shared amongst members of the team. Explicit rules are
the stated rules, policies, procedures and team requirements defined for the team. We are par-
ticularly interested in the way these rules guide individual contributions to the team’s goals.

As the team attempts to achieve its task, team interactions lead to the development of implicit
and explicit rules for social or interpersonal interaction to guide team member behavior in
achieving its goals and functions. These changes are the result of integrating the knowledge of
experts into the team’s structure reflecting behavioral changes within a team over time, what
March et al. [98] and Hayes and Allinson [99] refer to as learning on the group level. Grant [100]
similarly suggests that a firm (or team) creates coordination mechanisms, in the form of proce-
dures and norms, to economize on communication, knowledge transfer and learning, thus re-
serving team decision making and problem solving for complex and unusual tasks.

Summary

Combining the discussion of the three aspects of structure described above results in the con-
ceptual framework shown in Table 1. For each of the three aspects of structure, the table de-
scribes the embodiment of the structure as we have conceptualized it for FLOSS teams, and the
actions that are guided by the structures and that reinforce or modify the structures. The resulting
model is largely consistent with Grant’s knowledge-based view of the firm [100], which analyzes
a firm as a structure for integrating specialist knowledge into the firm’s activities and products
[101]. Though this theory was originally stated in terms of firms, it is easily applicable to FLOSS
development teams. The knowledge-based view presents coordination, shared mental models,

Table 1. Constructs for study: Embodiments of structures and
actions guided by and that reinforce or modify structures.

Structure Structural embodiment Actions guided by
structure

Actions that create/
reinforce/modify
structure

Signification Shared mental models Task contribution
and coordination

Socialization
Conversation
Recapitulation

Domination Roles with differential access
to resources

Task contribution
and coordination

Role definition
Role assignment

Legitimation Norms
Formal rules and procedures

Task contribution
and coordination

Rule creation and
change

8

communication and decision-making and learning as interdependent issues affecting the effec-
tiveness of distributed teams. Grant suggests that to integrate knowledge, firms need coordina-
tion mechanisms including rules, sequencing and routines that economize on communication,
knowledge transfer and learning, and team decision making and problem solving for the most
complex and unusual tasks. Finally, although there is differentiation between experts in what
they know, Grant identifies shared mental models as an important prerequisite for knowledge
integration.

3. Research Design

In this section, we will discuss the design of the proposed study, addressing the basic re-
search strategy, concepts to be examined, sample populations and proposed data collection and
analysis techniques. In this section, we first discuss the goals and general design of the study. We
then present the details of how data will be elicited and analyzed.

Longitudinal multiple case study of four FLOSS teams

To study the dynamics of the formation and evolution of distributed teams of FLOSS devel-
opers, we will carry out a longitudinal in-depth multiple case study design, as suggested by Bar-
ley and Tolbert [1]. The overall research design is shown in Figure 3. As Yin defines it, a case
study is “an empirical inquiry that investigates a contemporary phenomenon within its real-life
context; when the boundaries between phenomenon and context are not clearly evident; and in
which multiple sources of evidence are used” [102]. For some of the cases (cases 1 and 2 in Fig-
ure 3), we will combine the longitudinal study with retrospective data analysis.

We will examine the dynamics of changes for each of the aspects of structure identified in
Table 1 (shared mental models, roles, rules and norm). Each case study will draw on multiple
sources of data, including observation and participant observation, project and developer demo-
graphics, project plans and procedures, and interviews. The data will be analyzed using content
analytic techniques, cognitive maps, process maps and social network analysis. Throughout the
study, we plan to check our design and preliminary results with frequent engagement with the
FLOSS community through a project advisory board of developers.

Barley and Tolbert [1] suggest four steps in a study to investigate the dynamics of structure:
“(1) defining an institution (structure) at risk of change over the term of the study and selecting
sites in light of this definition; (2) charting flows of action at the sites and extracting scripts char-
acteristic of particular periods of time; (3) examining scripts for evidence of change in behavioral
and interaction patterns; and (4) linking findings from observational data to other sources of data
on changes in the institution of interest” (pg. 103).

In the remainder of this section, we will discuss how we implement each of these steps, while
deferring discussion of the details of data collection and analysis to subsequent sections.

Step one: Selecting sites. We will start by identifying promising projects for investigating the
dynamics of structure and action. We plan to study four FLOSS project teams in depth to allow
for comparison on two dimensions. In selecting teams to study, we will consider theoretical and
pragmatic aspects.
• First, we will pick projects that vary in the level of corporate participation, for the reasons

discussed above in the conceptual development section.
• Second, we will compare two newly-formed and two well-established project teams. We will

study the development of the teams longitudinally and the two established teams retrospec-
tively as well. Picking newly-formed teams will allow us to study the initial stages of team
formation and in particular the negotiation among previously experienced structures brought
in by team members. However, relying entirely on new teams seems risky. First, Barley and
Tolbert [1] note the difficulties of identifying settings that are likely to experience interesting
changes. Second, we want to ensure that we study some teams that have developed effective
work practices. Studying some established teams allows us to choose some projects that are

9

known to be effective. Studying established projects also facilitates study of the processes of
socialization of new members into an ongoing project.

In order to ensure that we are studying genuine teams (as opposed to single person development
efforts [103]), we will choose only projects with more than seven core developers, a lower limit
for team size suggested by Hare [104].

In selecting projects, we will also have to take into consideration some pragmatic considera-
tions. We will select FLOSS teams where we have access to the data we need (e.g., message
logs) and where we can obtain the participation of developers for interviews. We are fortunate to
have already obtained agreements to cooperate from leading FLOSS developers, as shown by the
attached letters of support included in the supporting documents.

Figure 3. Overall research design.

Case 1

Case 3

T-3 T0T-1T-
23

T1 T4T3T2

Study Begins
2004 2005

Interaction -3 Inter -2

2006

Retrospective

Case 2

Inter -1 Inter 0 Inter 1 Inter 2 Inter 3

T-3 T0T-1T-2 T1 T4T3T2

Interaction -3 Inter -2 Inter -1 Inter 0 Inter 1 Inter 2 Inter 3

T1 T4T3T2

Inter 1 Inter 2 Inter 3
Case 4

T1 T4T3T2

Inter 1 Inter 2 Inter 3

 Interaction: investigate dynamics
Data: observation, interviews
Analysis: content analysis

 T i: changes in structure
Data: interaction logs, interviews, rules and procedures, project
demographics, and developer demographics
Analysis: social network analysis, content analysis, and
cognitive maps

10

Step two: Charting flows of actions. In this step we extract the interactions of team members
within a particular time period to investigate the dynamics by which the teams develop over
time. We plan to interview developers for each case at least every six months (see Figure 3). Six
months was chosen since it provides a small enough gap to be able to trace the process of change
relying on developers’ memories of events, while still being feasible for data collection and not
too onerous for participants. We will also extract team interactions from email logs, ethnographic
field notes, and observations of developer activities between the six month measurement points
to analyze the dynamics that lead to the observed changes. For two of the cases, we will carry out
a similar analysis on retrospective data (potentially over the entire recorded history of the pro-
ject). The details of data elicitation and analysis are discussed in the following sections.

Step three: Identifying patterns of changes. Once we extract the segments of interactions dis-
cussed in step two, we will analyze the interaction to uncover the dynamics of the teams. More
specifically we look to uncover the patterns of behavior through which members change shared
mental models, roles, and norms and rules. We investigate the dynamics by which teams develop
shared mental models by studying how members contribute to and coordinate tasks paying spe-
cial attention to evidence of recapitulation, socialization, conversation. We study how role are
assigned and evolve over time by studying member contribution and looking for evidence of role
definition and role changes. Lastly, we study the dynamics by which rules and norms evolve by
also looking for task contribution and coordination, paying special attention to evidence of rules
creation and modification.

Step four: Linking changes in structures to other changes. In Step 4, Barley and Tolbert [1]
suggest linking changes in the structures to other changes of interest in the sites being studied.
Since the primary focus of our study is the dynamics of the teams, this step will not be the major
focus of our efforts. Nevertheless, we will triangulate evidence gathered from multiples sources
of evidence about the teams. For example, comparisons across the teams will provide evidence to
help us understand the role of corporate participation in the teams.

Data collection

To explore the concepts identified in the conceptual development section of this proposal
(Table 1), we will collect a wide range of data: project demographics, developer demographics,
interaction logs, project plans and procedures, developer interviews, and project observation. In
the remainder of this section, we will briefly review each source. Table 2 shows the mapping
from each construct to data source.

Developer demographics. We will collect basic descriptive data about developers, such as
area of expertise, formal role, years with the project, other projects the developer participates in
etc. Often these data are self-reported by the developers on project pages; in other cases, they can
be elicited from the developers during interviews. We will track changes in the formal rules of
members using this source.

Project plans and procedures. Many projects have stated release plans and proposed
changes. Such data are often available on the project’s documentation web page or in a “status”
file used to keep track of the agenda and working plans [96]. For example, Scacchi [7] examined
requirements documentation for FLOSS projects. We will also examine any explicitly stated
norms, procedures or rules for taking part in a project, such as the process to submit and handle
bugs, patches or feature request. Such procedures are often reported on the project’s web page
(e.g., http://dev.apache.org/guidelines.html). We will track changes in the various versions of any
specific set of rules and procedures.

Interaction logs. The most voluminous source of data will be collected from archives of
CMC tools used to support the team’s interactions for FLOSS development work [32,67]. These
data are useful because they are unobtrusive measures of the team’s behaviours [105]. Mailing
list archives will be examined, as email is a primary tool used to support team communication,
learning and socialization. Such archives contain a huge amount of information: e.g., the Linux
kernel list receives 5-7000 messages per month, the Apache httpd list receives an average of 40

11

messages a day. From mailing lists, we will extract the date, sender and any individual recipient’
names, the sender of the original message, in the case of a response, and text of each message.
We will examine features request archives and logs from other interaction tools, such as chat ses-
sions. While in most cases these archives are public, we plan to consult with the Syracuse Uni-
versity Human Subjects Institutional Review Board to determine what kind of consent should be
sought before proceeding with analysis. Mailing list archives is the main source of interaction
data that illuminates the ‘scripts’ for the analysis of dynamics [1]. Observation data from email
logs can potentially provide a rich description of the behaviors (patterns of interaction) of
FLOSS teams. This rich description leads to a better understanding of the dynamics of FLOSS
development.

Observation. We have found from our initial pilot study (described below under Results from
Prior Funding) that developers interact extensively at conferences. Indeed, Nardi and Whittaker
[106] note the importance of face-to-face interactions for sustaining social relations in distributed
teams. The FreeBSD developer Poul-Henning Kamp has also stated that phone calls can be occa-
sionally used to solve complex problems [107]. These interactions are a small fraction of the to-
tal, but they may still be crucial to understanding the team’s practices. We plan to use attendance
at developer conferences as an opportunity to observe and document the role of face-to-face in-
teraction for FLOSS teams.

Participant observation. We plan to carry out a virtual ethnographic study of developer so-
cialization and interaction relying on participant observation of the teams. One student involved
with the project has already virtually joined several development teams (with the permission of
the project leaders and the knowledge of other members) and is currently participating in their
normal activities while observing and recording these activities (following a protocol approved
by the Syracuse University Human Subjects Review Board). In this way, we will study and learn

Table 2. Constructs, sources of data, and analysis.

Structure Constructs Data sources (see section 3)
Shared mental models Content analysis of interactions, interviews and ob-

servation
Task coordination and
contribution

Process mapping, social network analysis

Signification

Socialization
Conversation
Recapitulation

Content analysis of interactions, interviews and ob-
servation

Roles with differential
access to resources

Process mapping, social network analysis
Content analysis of interactions, interviews and ob-
servation

Task coordination and
contribution

(See above)

Domination

Role definition
Role changes

Process mapping, social network analysis

Norms
Formal rules and pro-
cedures

Content analysis of interactions, interviews and ob-
servation
Project plans and procedures

Task coordination and
contribution

(See above)

Legitimation

Rule creation and
change

Content analysis of interactions, interviews and ob-
servation

12

first hand the socialization and coordination practices of these teams. We will track these teams
through the various stages of development status, from planning through production/stable stage,
observing how new members join the teams and how they contribute to the team output.

Developer interviews. While the data sources listed above will provide an extensive pool of
data, they are mostly indirect. Interviews are important to get rich, first-hand data about develop-
ers’ perceptions and interpretations. We plan to conduct interviews with key informants in the
selected projects. Interviews will be conducted in part by e-mail, but we also plan to attend one
or two FLOSS conferences each year (e.g., the O’Reilly Open Source Convention or ApacheCon)
to interview FLOSS developers face-to-face. The first round of interviews will be scheduled after
the initial data analysis to ensure that we have a sufficient understanding of the process to be able
to pose intelligent questions, and on a recurring basis to provide insight into the dynamics of the
team, as discussed above. We will explore the developer’s initial experiences of participation in
FLOSS, the social structure and norms of the team, processes of knowledge exchange and so-
cialization (especially the role of observation or lurking, which leaves no traces in the interaction
logs), and knowledge of other members’ participation [108,109]. As well, interviews will be
used to verify that the archives of interaction data give a fair and reasonably complete record of
day-to-day interactions.

Data analysis

While voluminous, the data described above are mostly at a low level of abstraction. The
collected data will be analyzed using a variety of techniques in order to raise the level of con-
ceptualization to fit the theoretical perspectives described in Section 2 and to address our re-
search questions. Table 3 shows the mapping from data sources to data analysis techniques.

Content analysis. The project will rely heavily on content analysis of the text in interaction
archives and interviews to develop insights on the extent and development of shared mental
models and socialization (e.g., the way projects are created, introduction of new members, mem-
bers leaving and community building). Data will be analyzed following the process suggested by
Miles and Huberman [110], iterating between data collection, data reduction (coding), data dis-
play, and drawing and verifying conclusions. The researchers will develop an initial content
analytic framework to discover the patterns of the various variables present in the data. The ini-
tial (deductive) framework will be based on indicators from content analytic frameworks previ-
ously used to investigate shared mental models [e.g., 111]. In addition we will incorporate work
on Asynchronous Learning Networks investigating social, cognitive and structuring processes of
virtual teams [112]. We will start the data analysis using the initial content analytic scheme and
modify the scheme as new categories and indicators emerge in the data [110]. Further categories
will be added and other data will be collected as preliminary findings in the analysis suggest. We
will use the thematic unit of analysis while conducting the content analysis to capture the various
elements of the variables under investigation as appropriate. To increase the validity and reli-

Table 3. Data sources and planned analysis approaches.

Data source Analysis approach

Developer demographics Statistical
Social network analysis

Developer interaction logs
Content analysis, process mapping

Project plans and procedures Content analysis
Developer interviews Content analysis, process mapping, cognitive mapping
Observation of developer interac-
tions

Content analysis, process mapping, cognitive mapping

Participant observation Content analysis, process mapping, cognitive mapping

13

ability of the coding scheme we will conduct intercoder reliability tests and modify the content
analytic scheme until we reach an 85% agreement level [113].

Social network analysis (SNA). SNA will be used to analyze patterns of interactions (e.g.,
who responds to whose email) in order to reveal the structure of the social network of projects.
Madey, Freeh & Tynan [114] applied this technique to connections between projects, but not
within projects. We are particularly interested in using social network information to identify
various structural roles in the team and how individuals fill these roles over time. This analysis
of structural roles should provide a useful counterpoint to descriptions of formal roles. As well
this analysis will track the socialization of members into the core of the team, and the develop-
ment and changes in leadership over time. We will assess an individual’s centrality and the pro-
ject’s hierarchy, which seems to mediate the effect of role and status on individual performance
within virtual teams [13], the way contributions are distributed among developers and the roles
assumed by core developers. The results of such analyses will support us in the identification of
the social relations patterns and the way such patterns develop and affect team learning and so-
cialization.

Process maps. The open source software development processes will be mapped based on an
inductive coding of the steps involved. For example, to map the bug fixing process, we will ex-
amine how various bugs were fixed as recorded in the bug logs, email messages and the code.
Van de Ven and Poole [115] describe in detail the methods they used to develop and test a proc-
ess theory of how innovations develop over time. Yamauchi et al. [116] coded messages to un-
derstand the development processes of two FLOSS projects. Process traces can be clustered
using optimal matching procedures [117] to develop clusters of processes. These process de-
scriptions can be enriched with descriptions of the process from developers’ reports of critical
incidents and of the process in general [118].

In our analyses, we will identify which individuals perform which activities to identify dif-
ferent process roles, thus providing a counterpoint to the SNA roles described above. We will
also identify the coordination modes and task assignment practices involved in software mainte-
nance (i.e., the number of features request assigned, types of requests, number and types of
spontaneous contributions), the adoption of other formal coordination modes (from the analysis
of the written policies regarding contributions to projects), as well as the degree of interdepen-
dency among the tasks (based on an analysis of communication patterns among different roles
and different contributors). Another question we intend to answer is the extent to which the use
of various distributed software development tools (e.g., CVS, bug tracking databases) provides a
source of structure for the process.

Cognitive maps. Cognitive maps will be developed from interview data to represent and
compare the mental models of the developers about the project and project team so as to gauge
the degree of common knowledge and the development of shared mental models [119-122]. Met-
rics (e.g., number of heads, tails, domain and centrality) provided by existing software packages
(e.g., Decision Explorer or CMAP2) and ad hoc developed metrics will be used to analyze and
compare the different maps. In particular, the comparisons among different team members’ maps
will provide insights about eventual shared mental models acting within teams. We will also de-
rive collective maps for each project. Collective maps usually represent perspectives that are
common to all the members of a team. Shared perspectives derive from the comprehension of
mutual positions and roles, which are fundamental to create synergies within the team. The PI
has some experience studying mental models [123] but for this analysis in particular will work
with a collaborator, Professor Barbara Scozzi, as discussed below.

Work plan
Based on preliminary assessment of the effort required, we are requesting funding for two

graduate students. The graduate students will devote 50% effort during the academic year and
100% effort during the summers, for a total of 3300 hours/year (4400 hours in two years). One of
the graduate students will support the principal investigator in sample section, definition of con-

14

structs and variables, and will have primary responsibility for data collection and analysis, under
the oversight of the PI. The second graduate student will be assigned to carry out a virtual ethno-
graphic study of project teams. The principal investigator will work one-third-time on the project
during the summers, 1 month per year. Summers will be devoted to sample selection, interviews
and publication of results. The PI will devote 10% of effort during the academic year to project
management and oversight (1/2 day / week, supported by Syracuse University).

These activities, in particular those related to the analysis of shared mental models within the
FLOSS development teams, will be carried out with the assistance of an international collabora-
tor, Dr. Barbara Scozzi of the Department of Mechanical and Business Engineering, Polytechnic
of Bari, Italy (please see the supporting documents section for a letter of support and vitae; no
funding is being requested from NSF to support Dr. Scozzi). Dr. Scozzi has collaborated with the
PI on a study of FLOSS project success factors [56] and her competencies in cognitive mapping
[124,125] will be particularly valuable for this project.

4. Conclusion
In this proposal, we develop a conceptual framework and a research plan to investigate work

practices within distributed FLOSS development teams. To answer our research question, we
will conduct a longitudinal in-depth study identifying and comparing the formation and evolution
of distributed teams of FLOSS developers. We will study how these distributed groups develop
shared mental models to guide members’ behavior, roles to control access to resources, and
norms and rules to shape action and the dynamics by which independent, geographically-
dispersed individuals are socialized into the group.

Expected intellectual merits

The project will contribute to advancing knowledge and understanding of distributed teams
by identifying the dynamics of distributed FLOSS teams. The study has two main strengths.
First, we fill a gap in the literature with an in-depth investigation of the dynamics of developing
shared mental models, role and norms and rules in FLOSS teams and of socializing new mem-
bers to these structures, based on a large pool of data and a strong conceptual framework. Sec-
ond, we use several different techniques to analyze the team dynamics, providing different
perspectives of analysis and a more reliable portrait of what happens in the development teams.
Moreover, some of data analysis techniques, such as cognitive maps and social network analysis,
have not yet been used with FLOSS teams.

We expect this study to have conceptual, methodological as well as practical contributions.
Understanding the dynamics of learning in a team of independent knowledge workers working in
a distributed environment is important to improve the effectiveness of distributed teams and of
the traditional and non-traditional organizations within which they exist. As Maier et al. suggest;
“Knowledge about the process, or the know how, of learning facilitates corrections that simulate
or accelerate learning” [10]. Developing a theoretical framework consolidating a number of theo-
ries to understand the dynamics within a distributed team is a contribution to the study of distrib-
uted teams and learning within organization literature [39]. Employing qualitative techniques to
understand the process of learning will also be a contribution to the organizational learning
methodology [126].

Expected broader impacts

The project has numerous broader impacts. The project will benefit society by identifying the
dynamics of learning and socialization in FLOSS development, an increasingly important ap-
proach to software development. The study will also shed light on dynamics of learning and so-
cialization for distributed work teams in general, which will be valuable for managers who
intend to implement such an organizational form. Understanding the dynamics of learning and
socialization can serve as guidelines (in team governance, task coordination, communication
practices, mentoring, etc.) to improve performance and foster innovation. Understanding these
questions is important because a digital society entails an increased use of distributed teams for a
wide range of knowledge work. Distributed work teams potentially provide several benefits but

15

the separation between members of distributed teams creates difficulties in coordination, collabo-
ration and learning, which may ultimately result in a failure of the team to be effective
[36,37,127,128]. For the potential of distributed teams to be fully realized, research is needed on
the dynamics of learning and socialization. As well, findings from the study can be used to en-
hance the way CMC technologies are used in education or for scientific collaboration. For exam-
ple, the results could be used to improve the design and facilitation of e-learning courses and
distance classes. Finally, understanding FLOSS development teams may be important as they are
potentially training grounds for future software developers. As Arent and Nørbjerg [129] note, in
these teams, “developers collectively acquire and develop new skills and experiences”.

To ensure that our study has a significant impact, we plan to broadly disseminate results
through journal publications, conferences, workshops and on our Web pages. We also plan to
disseminate results directly to practitioners through interactions with our advisory board and with
developers, e.g., at FLOSS conferences. Our results could also potentially be incorporated into
the curricula of the professional masters degrees of the Syracuse University School of Informa-
tion Studies, which are taught on-line and thus involve distributed teams. Findings about the dy-
namics of the learning process in FLOSS development teams can also benefit the design of
technology and engineering curricula. These fields use similar processes for learning and devel-
opment, and thus can benefit from out findings. In order to improve infrastructure for research,
we also plan to make our tools and raw data available to other researchers. The project will pro-
mote teaching, training, and learning by including graduate and undergraduate students in the
research project. These students will have the opportunity to develop skills in data collection and
analysis.

Results from prior NSF funding
Kevin Crowston has been funded by three NSF grants within the past 48 months. The most

recent is IIS–0341475, SGER: Effective work practices for Open Source software development
($12,052, 1 September 2003 to 31 August 2004). This small grant has provided support for travel
to conferences (e.g., ApacheCon) to observe, interview and seek support from developers and to
present preliminary results, and for the purchase of data analysis software, supporting the initial
results reported in this proposal. This work has resulted in an accepted conference paper [130],
with additional papers in preparation [e.g., 131].

Earlier support came from IIS–9732799 ($69,997, September 1, 1998 to February 29, 2000)
and IIS–0000178 ($269,967, July 1, 2000 to June 30, 2003), both entitled Towards Friction-Free
Work: A Multi-Method Study of the Use of Information Technology in the Real Estate Industry.
The goal of that study was to examine how the pervasive use of information and communication
technologies (ICT) in the real-estate industry changes the way people and organizations in that
industry work. Initial fieldwork resulted in several journal articles [132-134] and numerous con-
ference presentations [e.g., 135,136].

The core of the PI’s research agenda concerns novel organizational forms enabled by new
uses of ICT. The present proposal builds on his interest in coordination processes and virtual or-
ganizations by studying a novel setting, namely FLOSS development teams.

16

References

1 Barley, S.R. and Tolbert, P.S. (1997) Institutionalization and structuration: Studying the links be-
tween action and institution. Organization Studies 18 (1), 93–117

2 Stamelos, I., Angelis, L., Oikonomou, A. and Bleris, G.L. (2002) Code quality analysis in open
source software development. Information Systems Journal 12 (1), 43–60

3 Raymond, E.S. (1998) The cathedral and the bazaar. First Monday 3 (3)

4 Wayner, P. (2000) Free For All, HarperCollins

5 Herbsleb, J.D. and Grinter, R.E. (1999) Splitting the Organization and Integrating the Code:
Conway’s Law Revisited. In Proceedings of the International Conference on Software Engineering
(ICSE ‘99), pp. 85–95, ACM

6 Alho, K. and Sulonen, R. (1998) Supporting virtual software projects on the Web. In Workshop on
Coordinating Distributed Software Development Projects, 7th International Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises (WETICE ’98)

7 Scacchi, W. (2002) Understanding the Requirements for Developing Open Source Software Systems.
IEE Proceedings Software 149 (1), 24–39

8 Weick, K.E. and Roberts, K. (1993) Collective mind in organizations: Heedful interrelating on flight
decks. Administrative Science Quarterly 38 (3), 357–381

9 Cannon-Bowers, J.A. and Salas, E. (2001) Reflections on Shared Cognition. Journal of Organiza-
tional Behavior 22, 195–202

10 Maier, G.W., Prange, C. and Rosenstiel, L. (2001) Psychological perspectives on organizational
learning. In Handbook of Organizational Learning and Knowledge (Dierkes, M. et al., eds.), pp.
14–34, Oxford Press

11 Huber, G.P. (1991) Organizational learning: The contributing processes and the literatures. Organi-
zation Science 2 (1), 88–115

12 O'Leary, M., Orlikowski, W.J. and Yates, J. (2002) Distributed work over the centuries: Trust and
control in the Hudson's Bay Company, 1670–1826. In Distributed Work (Hinds, P. and Kiesler, S.,
eds.), pp. 27–54, MIT Press

13 Ahuja, M.K., Carley, K. and Galletta, D.F. (1997) Individual performance in distributed design
groups: An empirical study. In SIGCPR Conference, pp. 160–170, ACM, San Francisco

14 Nejmeh, B.A. (1994) Internet: A strategic tool for the software enterprise. Communications of the
ACM 37 (11), 23–27

15 Scacchi, W. (1991) The Software Infrastructure for a Distributed Software Factory. Software Engi-
neering Journal 6 (5), 355–369

16 Watson-Manheim, M.B., Chudoba, K.M. and Crowston, K. (2002) Discontinuities and continuities: A
new way to understand virtual work. Information, Technology and People 15 (3), 191–209

17 van Fenema, P.C. (2002) Coordination and control of globally distributed software projects. In Eras-
mus Research Institute of Management, pp. 572, Erasmus University

18 de Souza, P.S. (1993) Asynchronous Organizations for Multi-Algorithm Problems. Department of
Electrical and Computer Engineering, Carnegie-Mellon University

19 Armstrong, D.J. and Cole, P. (2002) Managing distance and differences in geographically distributed
work groups. In Distributed Work (Hinds, P. and Kiesler, S., eds.), pp. 167–186, MIT Press

20 Curtis, B., Walz, D. and Elam, J.J. (1990) Studying the Process of Software Design Teams. In Pro-
ceedings, pp. 52–53

21 Espinosa, J.A., Kraut, R.E., Lerch, J.F., Slaughter, S.A., Herbsleb, J.D. and Mockus, A. (2001)
Shared Mental Models And Coordination In Large-Scale, Distributed Software Development. In
Twenty-Second International Conference on Information Systems, pp. 513–518, New Orleans, LA

17

22 Bandow, D. (1997) Geographically Distributed Work Groups and IT: A Case Study of Working Re-
lationships and IS Professionals. In Proceedings of the SIGCPR Conference, pp. 87–92

23 Mark, G. (2002) Conventions for coordinating electronic distributed work: A longitudinal study of
groupware use. In Distributed Work (Hinds, P. and Kiesler, S., eds.), pp. 259–282, MIT Press

24 Curtis, B., Krasner, H. and Iscoe, N. (1988) A field study of the software design process for large
systems. CACM 31 (11), 1268–1287

25 Walz, D.B., Elam, J.J. and Curtis, B. (1993) Inside a software design team: knowledge acquisition,
sharing, and integration. Communications of the ACM 36 (10), 63–77

26 Humphrey, W.S. (2000) Introduction to team software process, Addison-Wesley

27 Sawyer, S. and Guinan, P.J. (1998) Software development: Processes and performance. IBM Systems
Journal 37 (4), 552–568

28 Brooks, F.P., Jr. (1975) The Mythical Man-month: Essays on Software Engineering, Addison-Wesley

29 Seaman, C.B. and Basili, V.R. (1997) Communication and Organization in Software Development:
An Empirical Study Institute for Advanced Computer Studies, University of Maryland

30 Ocker, R.J. and Fjermestad, J. (2000) High Versus Low Performing Virtual Design Teams: A Pre-
liminary Analysis of Communication. In Proceedings of the 33rd Hawaii International Conference
on System Sciences, pp. 10 pages

31 Mockus, A., Fielding, R.T. and Herbsleb, J.D. (2000) A Case Study of Open Source Software Devel-
opment: The Apache Server. In Proceedings of ICSE’2000, pp. 11 pages

32 Herbsleb, J.D., Mockus, A., Finholt, T.A. and Grinter, R.E. (2001) An Empirical Study of Global
Software Development: Distance and Speed. In Proceedings of the International Conference on Soft-
ware Engineering (ICSE 2001), pp. 81–90

33 Butler, B., Sproull, L., Kiesler, S. and Kraut, R. (In press) Community Effort in Online Groups: Who
Does the Work and Why? In Leadership at a Distance (Weisband, S. and Atwater, L., eds.)

34 Grabowski, M. and Roberts, K.H. (1999) Risk mitigation in virtual organizations. Organization Sci-
ence 10 (6), 704–721

35 Herbsleb, J.D. and Grinter, R.E. (1999) Architectures, coordination, and distance: Conway's law and
beyond. IEEE Software (September/October), 63–70

36 Jarvenpaa, S.L. and Leidner, D.E. (1999) Communication and trust in global virtual teams. Organi-
zation Science 10 (6), 791–815

37 Kraut, R.E., Steinfield, C., Chan, A.P., Butler, B. and Hoag, A. (1999) Coordination and virtualiza-
tion: The role of electronic networks and personal relationships. Organization Science 10 (6),
722–740

38 Kiesler, S. and Cummings, J. (2002) What do we know about proximity and distance in work groups?
A legacy of research. In Distributed Work (Hinds, P. and Kiesler, S., eds.), pp. 57–80, MIT Press

39 Robey, D., Khoo, H.M. and Powers, C. (2000) Situated-learning in cross-functional virtual teams.
IEEE Transactions on Professional Communication (Feb/Mar), 51–66

40 Orlikowski, W.J. (2002) Knowing in Practice: Enacting a Collective Capability in Distributed Or-
ganizing. Organization Science 13 (3), 249–273

41 Di Bona, C., Ockman, S. and Stone, M., eds (1999) Open Sources: Voices from the Open Source
Revolution, O'Reilly & Associates

42 Kogut, B. and Metiu, A. (2001) Open-source software development and distributed innovation. Ox-
ford Review of Economic Policy 17 (2), 248–264

43 Lerner, J. and Tirole, J. (2001) The open source movement: Key research questions. European Eco-
nomic Review 45, 819–826

44 Hertel, G., Niedner, S. and Herrmann, S. (n.d.) Motivation of Software Developers in Open Source

18

Projects: An Internet-based Survey of Contributors to the Linux Kernel University of Kiel

45 Hann, I.-H., Roberts, J., Slaughter, S. and Fielding, R. (2002) Economic incentives for participating
in open source software projects. In Proceedings of the Twenty-Third International Conference on
Information Systems, pp. 365–372

46 Bessen, J. (2002) Open Source Software: Free Provision of Complex Public Goods Research on In-
novation

47 Franck, E. and Jungwirth, C. (2002) Reconciling investors and donators: The governance structure of
open source, Working Paper (No. 8) Lehrstuhl für Unternehmensführung und -politik, Universität
Zürich

48 Markus, M.L., Manville, B. and Agres, E.C. (2000) What makes a virtual organization work? Sloan
Management Review 42 (1), 13–26

49 Ljungberg, J. (2000) Open Source Movements as a Model for Organizing. European Journal of In-
formation Systems 9 (4)

50 Stewart, K.J. and Ammeter, T. (2002) An exploratory study of factors influencing the level of vitality
and popularity of open source projects. In Proceedings of the Twenty-Third International Conference
on Information Systems, pp. 853–857

51 Bezroukov, N. (1999) Open source software development as a special type of academic research (cri-
tique of vulgar raymondism). First Monday 4 (10)

52 Bezroukov, N. (1999) A second look at the Cathedral and the Bazaar. First Monday 4 (12)

53 Gallivan, M.J. (2001) Striking a balance between trust and control in a virtual organization: A content
analysis of open source software case studies. Information Systems Journal 11 (4), 277–304

54 Stewart, K.J. and Gosain, S. (2001) Impacts of ideology, trust, and communication on effectivness in
open source software development teams. In Twenty-Second International Conference on Information
Systems, pp. 507–512, New Orleans, LA

55 Valloppillil, V. (1998) Halloween I: Open Source Software, Available from
http://www.opensource.org/halloween/halloween1.html

56 Crowston, K. and Scozzi, B. (2002) Open source software projects as virtual organizations: Compe-
tency rallying for software development. IEE Proceedings Software 149 (1), 3–17

57 Prasad, G.C. (n.d.) A hard look at Linux’s claimed strengths…, Available from
http://www.osopinion.com/Opinions/GaneshCPrasad/GaneshCPrasad2-2.html

58 Valloppillil, V. and Cohen, J. (1998) Halloween II: Linux OS Competitive Analysis, Available from
http://www.opensource.org/halloween/halloween2.html

59 Hallen, J., Hammarqvist, A., Juhlin, F. and Chrigstrom, A. (1999) Linux in the workplace. IEEE
Software 16 (1), 52–57

60 Leibovitch, E. (1999) The business case for Linux. IEEE Software 16 (1), 40–44

61 Pfaff, B. (1998) Society and open source: Why open source software is better for society than pro-
prietary closed source software, Available from http://www.msu.edu/user/pfaffben/writings/anp/oss-
is-better.html

62 Moody, G. (2001) Rebel code—Inside Linux and the open source movement, Perseus Publishing

63 Vixie, P. (1999) Software engineering. In Open sources: Voices from the open source revolution (Di
Bona, C. et al., eds.), O’Reilly

64 Kraut, R.E. and Streeter, L.A. (1995) Coordination in software development. Communications of the
ACM 38 (3), 69–81

65 O’Reilly, T. (1999) Lessons from open source software development. Communications of the ACM
42 (4), 33–37

66 Shepard, T., Lamb, M. and Kelly, D. (2001) More testing should be taught. Communication of the

19

ACM 44 (6), 103–108

67 Lee, G.K. and Cole, R.E. (2000) The Linux Kernel Development As A Model of Open Source Knowl-
edge Creation, Unpublished manuscript Haas School of Business, University of California, Berkeley

68 Garvin, D.A. (1991) Barriers and gateways to learning. In Education for Judgement: The Art of Dis-
cussion Leadership (Christensen, C.R., Garvin, D.A. & Sweet, A., ed.), pp. 3–14, Harvard Business
School Press

69 Argyris, C. and Schön, D.A. (1996) Organizational Learning II: Theory, method and practice,
Addison-Wesley

70 Guzzo, R.A. and Dickson, M.W. (1996) Teams in organizations: Recent research on performance
effectiveness. Annual Review of Psychology 47, 307–338

71 Barley, S.R. (1986) Technology as an occasion for structuring: Evidence from the observation of CT
scanners and the social order of radiology departments. Administrative Sciences Quarterly 31, 78–109

72 Orlikowski, W.J. (1992) The duality of technology: Rethinking the concept of technology in organi-
zations. Organization Science 3 (3), 398–427

73 DeSanctis, G. and Poole, M.S. (1994) Capturing the complexity in advanced technology use: Adap-
tive structuration theory. Organization Science 5 (2), 121–147

74 Walsham, G. (1993) Interpreting Information Systems in Organizations, John-Wiley

75 Newman, M. and Robey, D. (1992) A social process model of user-analyst relationships. MIS Quar-
terly 16 (2), 249–266

76 Giddens, A. (1984) The Constitution of Society: Outline of the Theory of Structuration, University of
California

77 Sarason, Y. (1995) A model of organizational transformation: The incorporation of organizational
identity into a structuration theory framework. Academy of Management Journal (Best papers pro-
ceedings), 47–51

78 Gregory, D. (1989) Presences and absences: Time-space relations and structuration theory. In Social
theory of modern societies: Anthony Giddens and his critics, Cambridge University Press

79 Cassell, P., ed. (1993) The Giddens Reader, Stanford University Press

80 Orlikowski, W.J. and Yates, J. (1994) Genre repertoire: The structuring of communicative practices
in organizations. Administrative Sciences Quarterly 33, 541–574

81 Hackman, J.R. (1986) The design of work teams. In The Handbook of Organizational Behavior
(Lorsch, J.W., ed.), pp. 315–342, Prentice-Hall

82 Finholt, T. and Sproull, L.S. (1990) Electronic groups at work. Organization Science 1 (1), 41–64

83 Stein, E.W. and Vandenbosch, B. (1996) Organizational learning during advanced system develop-
ment: Opportunities and obstacles. Journal of Management Information Systems 13 (2), 115–136

84 Cannon-Bowers, J.A. and Salas, E. (1993) Shared Mental Models in Expert Decision Making. In In-
dividual and Group Decision Making (Castellan, N.J., ed.), pp. 221-246, Lawrence Erlbaum Associ-
ates

85 Dougherty, D. (1992) Interpretive Barriers to Successful Product Innovation in Large Firms. Organi-
zation Science 3 (2), 179–202

86 Levesque, L.L., Wilson, J.M. and Wholey, D.R. (2001) Cognitive divergence and shared mental
models in software development project teams. Journal of Organization Behavior 22, 135–144

87 Walton, R.E. and Hackman, J.R. (1986) Groups Under Contrasting Management Stratedies. In De-
signing Effective Work Groups (Goodman, P.S. and Associates, eds.), pp. 168–201, Jossey-Bass

88 Brown, J.S. and Duguid, P. (1991) Organizational learning and communities-of-practice: Toward a
unified view of working, learning, and innovation. Organization Science 2 (1), 40–57

89 Mohammed, S. and Dumville, B.C. (2001) Team mental models in a team knowledge framework:

20

Expanding theory and measurement across disciplinary boundaries. Journal of Organizational Be-
havior 22 (2), 89–106

90 Rentsch, J.R. and Klimonski, R.J. (2001) Why do ‘great minds’ think alike?: Antecedents of team
member schema agreement. Journal of Organizational Behavior 22 (2), 107–120

91 Moon, J.Y. and Sproull, L. (2000) Essence of distributed work: The case of Linux kernel. First Mon-
day 5 (11)

92 Cox, A. (1998) Cathedrals, Bazaars and the Town Council, Available from
http://slashdot.org/features/98/10/13/1423253.shtml, accessed 22 March 2004

93 Gacek, C., Lawrie, T. and Arief, B. (n.d.) The many meanings of Open Source, Unpublished manu-
script Centre for Software Reliability, Department of Computing Science, University of Newcastle

94 Fielding, R.T. (1997) The Apache Group: A case study of Internet collaboration and virtual commu-
nities, Available from http://www.ics.uci.edu/fielding/talks/ssapache/overview.htm.

95 Hecker, F. (1999) Mozilla at one: A look back and ahead, Available from
http://www.mozilla.org/mozilla-at-one.html

96 Cubranic, D. and Booth, K.S. (1999) Coordinating Open-Source Software Development. In Pro-
ceedings of the 7th IEEE Workshop on Enabling Technologies: Infrastructure for Collaborative En-
terprises

97 Swieringa, J. and Wierdsma, A. (1992) Becoming a Learning Organization, Addison-Wesley

98 March, J.G., Schulz, M. and Zhou, X. (2000) The Dynamics of Rules: Change in Written Organiza-
tional Codes, Stanford University Press

99 Hayes, J. and Allinson, C.W. (1998) Cognitive style and the theory and practice of individual and
collective learning in organizations. Human Relations 51 (7), 847-871

100Grant, R.M. (1996) Toward a knowledge-based theory of the firm. Strategic Management Journal 17
(Winter), 109–122

101Grant, R.M. (1996) Prospering in dynamically-competitive environments: Organizational capability
as knowledge integration. Organizational Science 7 (4), 375–387

102Yin, R.K. (1984) Case study research: Design and methods, Sage

103Krishnamurthy, S. (2002) Cave or Community? An Empirical Examination of 100 Mature Open
Source Projects University of Washington, Bothell

104Hare, A.P. (1976) Handbook of Small Group Research, Free Press

105Webb, E. and Weick, K.E. (1979) Unobtrusive measures in organizational theory: A reminder. Ad-
ministrative Science Quarterly 24 (4), 650–659

106Nardi, B.A. and Whittaker, S. (2002) The place of face-to-face communication in distributed work. In
Distributed Work (Hinds, P. and Kiesler, S., eds.), pp. 83–110, MIT Press

107Edwards, K. (2001) Epistemic Communities, Situated Learning and Open Source Software Develop-
ment. In Epistemic Cultures and the Practice of Interdisciplinarity Workshop, NTNU, Trondheim

108Mortensen, M. and Hinds, P. (2002) Fuzzy teams: Boundary disgreement in distributed and collo-
cated teams. In Distributed Work (Hinds, P. and Kiesler, S., eds.), pp. 284–308, MIT Press

109Weisband, S. (2002) Maintaining awareness in distributed team collaboration: Implications for lead-
ership and performance. In Distributed Work (Hinds, P. and Kiesler, S., eds.), pp. 311–333, MIT
Press

110Miles, M.B. and Huberman, A.M. (1994) Qualitative Data Analysis : An Expanded Sourcebook, Sage
Publications

111Edmondson, A. (1999) Psychological Safety and Learning Behavior in Work Teams. Administrative
Science Quarterly 44 (2), 350-383

112Heckman, R. and Annabi, H. (2003) A Content Analytic Comparison of FTF and ALN Case-Study

21

Discussions. In 36th Annual Hawaii International Conference on System Sciences (HICSS'03), IEEE
Press, Big Island, Hawaii

113Baker-Brown, G., Ballard, E., Bluck, S., DeVries, B., Suedfeld, P. and Tetlock, P. (1990) Coding
Manual for Conceptual/Integrative Complexity University of British Columbia and University of
California, Berkely

114Madey, G., Freeh, V. and Tynan, R. (2002) The open source software development phenomenon: An
analysis based on social network theory. In Proceedings of the Eighth Americas Conference on In-
formation Systems, pp. 1806–1815

115 van de Ven, A.H. and Poole, M.S. (1990) Methods for studying innovation development in the Min-
nesota Innovations Research Program. Organization Science 1 (3), 313–335

116Yamauchi, Y., Yokozawa, M., Shinohara, T. and Ishida, T. (2000) Collaboration with lean media:
How open-source software succeeds. In Proceedings of CSCW’00, pp. 329–338

117Abbott, A. (1990) A primer on sequence methods. Organization Science 1 (4), 375–392

118Crowston, K. and Osborn, C.S. (2003) A coordination theory approach to process description and
redesign. In Organizing Business Knowledge: The MIT Process Handbook (Malone, T.W. et al.,
eds.), MIT Press

119Carley, K.M. and Palmquist, M. (1992) Extracting, representing and analyzing mental models. Social
Forces 70 (3), 601–636

120Carley, K.M. (1997) Extracting team mental models through textual analysis. Journal of Organiza-
tional Behaviour 18, 533–558

121Langfield-Smith, K. (1992) Exploring the need for a shared cognitive map. Journal of management
studies 29 (3), 349-368

122Nadkarni, S. and Nah, F.F.-H. (2003) Aggregated Causal Maps: An Approach To Elicit And Aggre-
gate The Knowledge Of Multiple Experts. Communications of the Association for Information Sys-
tems 12, 406–436

123Crowston, K. and Kammerer, E. (1998) Coordination and collective mind in software requirements
development. IBM Systems Journal 37 (2), 227–245

124Albino, V., Kuhtz, S. and Scozzi, B. (2003) Actors and cognitive maps on sustainable development in
industrial district. In Uddevalla Symposium, Uddevalla, Sweden

125Carbonara, N. and Scozzi, B. (2003) Cognitive maps to analyze new product development processes:
A case study. In 10th International Product Development Management Conference, Brussels, Bel-
gium

126Miner, A.S. and Mezias, S.J. (1996) Ugly Duckling No More: Pasts and Futures of Organizational
learning. Organization Science 7 (1), 88–99

127Bélanger, F. and Collins, R. (1998) Distributed Work Arrangements: A Research Framework. The
Information Society 14 (2), 137–152

128Carmel, E. and Agarwal, R. (2001) Tactical approaches for alleviating distance in global software
development. IEEE Software (March/April), 22–29

129Arent, J. and Nørbjerg, J. (2000) Software Process Improvement as Organizational Knowledge Crea-
tion: A Multiple Case Analysis. In Proceedings of the 33rd Hawaii International Conference on Sys-
tem Sciences, pp. 11 pages, IEEE Press

130Crowston, K., Annabi, H. and Howison, J. (2003) Defining Open Source Software project success. In
Proceedings of the 24th International Conference on Information Systems (ICIS 2003)

131Crowston, K. and Howison, J. (2003) The social structure of Open Source Software development
teams. In The IFIP 8.2 Working Group on Information Systems in Organizations Organizations and
Society in Information Systems (OASIS) 2003 Workshop, Seattle, WA

132Crowston, K. and Wigand, R. (1999) Real estate war in cyberspace: An emerging electronic market?

22

International Journal of Electronic Markets 9 (1–2), 1–8

133Crowston, K., Sawyer, S. and Wigand, R. (2001) Investigating the interplay between structure and
technology in the real estate industry. Information, Technology and People 14 (2), 163–183

134Sawyer, S., Crowston, K., Wigand, R. and Allbritton, M. (2003) The social embeddedness of transac-
tions: Evidence from the residential real estate industry. The Information Society 19 (2), 135–154

135Crowston, K., Sawyer, S. and Wigand, R. (1999) Investigating the interplay between structure and
technology in the real estate industry. In Organizational Communications and Information Systems
Division, Academy of Management Conference, Chicago, IL

136Crowston, K. and Wigand, R. (1998) Use of the web for electronic commerce in real estate. In Asso-
ciation for Information Systems Americas Conference, Baltimore, MD

1

Politecnico di Bari
DIPARTIMENTO DI INGEGNERIA PER L?AMBIENTE E LO
SVILUPPO SOSTENIBILE

dr. Barbara Scozzi

31 March 2004
Kevin Crowston
Syracuse University School of Information Studies
4–206 Centre for Science and Technology
Syracuse, NY 13244–4100
USA

Dear Kevin:

I would like to be involved as a collaborator in your project “Dynamics of Open Source
Software Development Teams”. My participation would represent a chance to advance
my understandings of the knowledge management dynamics adopted in a computer-
mediated environment, while working in a very stimulating international context. I
believe that my contribution would also be extremely useful for the project
development.

I’m an Assistant Professor of Business and Management Engineering at the Polytechnic
of Bari (Italy). My research activity deals with the analysis of coordination and
knowledge management practices adopted in business organizations and, in particular,
on the role that information systems play to support such practices. Open Source
Software (OSS) development teams represent a perfect context where to study those
aspects. The teams exemplify a new and successful organizational form enabled by the
use of Information and Communication Technology. Investigating the knowledge
management dynamics adopted by such teams would provide relevant insights on some
aspects, such as learning and socialization, as they occur in a distributed work
environment and on the way they affect the work performance.

This project would be a good extension to our current research on OSS project’s
success factors, some results of which have already been published on an academic
journal (please refer to the attached biographical sketch). Our joint research activity
develops within a collaborative research agreement established between my University
(Polytechnic of Bari - Department of Mechanics and Business Engineering) and the
School of Information Studies (Syracuse University). The agreement is aimed at
promoting the development of joint research projects, fostering the exchange of
scientific knowledge and facilitating the mobility of professors and students. My
eventual involvement in the project would, thus, be part of a research program already
in progress, for which I’m going to present a proposal project to the European
Community and the Italian Minister of Instruction, University and Research.

My competencies in the study of knowledge management practices as well as my
interest in cognitive mapping could be particularly useful for the project outcomes. In

2

particular, I would like to contribute to the analysis of the cognitive models adopted
within OSS development teams, I could interview (face-to-face and by email) the OSS
developers involved in some selected projects so as to develop their cognitive maps.
The analysis and comparison among the maps would be aimed at verifying the
existence (or the lack of) of a shared perspective about the adopted practices with a
specific focus on learning and socialization. Also, I would investigate the relationship
among the existence (or the lack of) a collective mind and the work performance.

I would participate to the project both in first person and through the work that some
students of the Politecnico of Bari, under my supervision and funded by the Politecnico
of Bari, could provide. The students could spend a period at the School of Information
Studies to work on the project. That would be an extremely formative experience for
them and a very useful support for the project development. This kind of experience has
been already experimented by some students of the Politecnico, mr. Giuseppe Sardone
(graduate student) and mr. Salvatore Buonocore (udergraduate student), that visited the
School of Information Studies (academic year 2002-2003) and worked on issues
related to Open Source Software.

Based on the above considerations, I again assert my vivid interest in taking part to the
project, as that participation would enhance my research activity and be valuable for the
project development.

Barbara Scozzi

