
Effective work practices for Open Source Software development
 We propose a study to address the general research question: what practices make some

Free/Libre Open Source Software (FLOSS) development teams more effective than others? To
answer this question, we propose a three-phase social science study identifying and comparing
the work practices of more and less effective FLOSS development teams. The proposed research
will be guided by an advisory board of FLOSS developers to ensure relevance and to help pro-
mote diffusion of our findings into practice.

As a conceptual basis for our study, we draw on Hackman’s [1] model of effectiveness of
work teams. Following on work by Crowston and Kammerer [2], we also use coordination the-
ory [3] and collective mind [4] to extend Hackman’s model by further elaborating team practices
relevant to software development. The literature on shared mental models, collective mind the-
ory [4] in particular, focuses our attention on actions that develop and exhibit shared under-
standings. Coordination theory [3] suggests identifying tasks, interdependences among tasks and
resources and the coordination mechanisms that are adopted.

The proposed study has three phases. During Phase I, we will conduct a census of FLOSS
projects in order to identify 1) development teams of interest and 2) concepts and relationships
that seem promising for further in-depth study. During Phase II, we will conduct an in-depth
multiple case study [5] on a small number of distributed FLOSS development teams (approxi-
mately 8) to test and extend the model developed in this proposal. During Phase III, we will
collect and analyze data on hundreds of teams using the metrics and tools developed in Phase II,
in order to generalize those findings. Phase III will also include a developer survey. Data con-
sidered will include project and developer demographics, interaction logs, code, interviews, ob-
servation and participant observation. Data will be analyzed to describe software development
practices and processes, team social networks, and shared mental models of developers.
Throughout the three phases we plan to check our design and preliminary results with frequent
engagement with the FLOSS community through a project advisory board.

Expected intellectual contributions
The project will contribute to advancing knowledge and understanding of FLOSS develop-

ment and distributed work more generally by identifying practices of effective teams. The study
fills a gap in the literature with an in-depth investigation of the practices adopted by FLOSS
teams based on a large pool of data and a strong conceptual framework. Second, we use several
different techniques to analyze the practices, providing different perspectives of analysis and a
more reliable portrait of what happens in the development teams. Finally, we attempt to assess
the relationship between the practices and the teams’ effectiveness, which again represents an
innovative approach in the literature on FLOSS.

Expected broader impacts
If successful, the project will benefit society by identifying the effective practices for FLOSS

development, an increasingly important approach to software development. The study will also
shed light on effective practices for distributed work teams in general, which will be valuable for
managers who intend to implement such an organizational form. Findings from the study might
also be used to enhance the way information and communication technologies (ICT) are used to
support distance education or for scientific collaboration. In order to improve infrastructure for
research, we plan to make the tools and raw data available to other researchers. As well, the
project involves an international collaboration. Such exchanges expand the perspectives, knowl-
edge and skills of both groups of scientists. Finally, the project will promote teaching, training,
and learning by providing graduate and undergraduate students an opportunity to work in teams,
integrate their competencies and develop new skills in data collection and analysis.

TABLE OF CONTENTS
For font size and page formatting specifications, see GPG section II.C.

 Total No. of Page No.*
Pages (Optional)*

Cover Sheet for Proposal to the National Science Foundation

 Project Summary (not to exceed 1 page)

 Table of Contents

 Project Description (Including Results from Prior

NSF Support) (not to exceed 15 pages) (Exceed only if allowed by a
specific program announcement/solicitation or if approved in
advance by the appropriate NSF Assistant Director or designee)

 References Cited

 Biographical Sketches (Not to exceed 2 pages each)

 Budget
(Plus up to 3 pages of budget justification)

 Current and Pending Support

 Facilities, Equipment and Other Resources

 Special Information/Supplementary Documentation

 Appendix (List below.)

(Include only if allowed by a specific program announcement/
solicitation or if approved in advance by the appropriate NSF
Assistant Director or designee)

Appendix Items:

*Proposers may select any numbering mechanism for the proposal. The entire proposal however, must be paginated.
Complete both columns only if the proposal is numbered consecutively.

1

1

15

7

2

6

1

1

13

1

Effective work practices for Open Source Software development
 We propose a study to address the following general research question: what practices make

some Free/Libre Open Source Software (FLOSS) development teams more effective than others? To
answer this question, we propose a three-phase study identifying and comparing the work practices
of more and less effective FLOSS development teams, guided by social science theories of effec-
tiveness of work teams, coordination and collective knowledge. The proposed research will be
guided by an advisory board of FLOSS developers to ensure relevance and to help promote diffusion
of our findings into practice.

Free/Libre Open Source Software is a broad term used to embrace software developed and re-
leased under an “open source” license allowing inspection, modification and redistribution of the
software’s source without charge (“free as in beer”). Much (though not all) of this software is also
“free software”, meaning that derivative works must be made available under the same unrestrictive
license terms (“free as in speech”, thus “libre”). We have chosen to use the acronym FLOSS rather
than the more common OSS to emphasize this dual meaning. There are thousands of FLOSS pro-
jects, spanning a wide range of applications. Due to their size, success and influence, the Linux op-
erating system and the Apache Web Server (and related projects) are the most well known, but
hundreds of others are in widespread use, including projects on Internet infrastructure (e.g., send-
mail, bind), user applications (e.g., Mozilla, OpenOffice) and programming languages (e.g., Perl,
Python, gcc). Many are popular (indeed, some dominate their market segment) and the code has
been found to be generally of good quality [6].

Key to our interest is the fact that most FLOSS software is developed by distributed teams. De-
velopers contribute from around the world, meet face-to-face infrequently if at all, and coordinate
their activity primarily by means of computer-mediated communications (CMC) [7, 8]. These teams
depend on processes that span traditional boundaries of place and ownership. The research literature
on software development and on distributed work emphasizes the difficulties of distributed software
development, but the case of FLOSS development presents an intriguing counter-example. What is
perhaps most surprising about the FLOSS process is that it appears to eschew traditional project co-
ordination mechanisms such as formal planning, system-level design, schedules, and defined devel-
opment processes [9]. As well, many (though by no means all) programmers contribute to projects as
volunteers, without working for a common organization or being paid. Characterized by a globally
distributed developer force and a rapid and reliable software development process, effective FLOSS
development teams somehow profit from the advantages and overcome the challenges of distributed
work [10]. The “miracle of FLOSS development” poses a real puzzle and a rich setting for research-
ers interested in the work practices of distributed teams.

As well, FLOSS development is an important phenomena deserving of study for itself. FLOSS is
an increasingly important commercial phenomenon involving all kinds of software development
firms, large, small and startup. Millions of users depend on systems such as Linux and the Internet
(heavily dependent on FLOSS tools), but as Scacchi [11] notes, “little is known about how people in
these communities coordinate software development across different settings, or about what software
processes, work practices, and organizational contexts are necessary to their success”. A 2002
EU/NSF workshop on priorities for FLOSS research identified the need both for learning “from open
source modes of organization and production that could perhaps be applied to other areas” and for “a
concerted effort on open source in itself, for itself” [12]. As evidenced by the attached letters of sup-
port from FLOSS developers, members of the FLOSS community are themselves interested in un-
derstanding and documenting effective practices and teams so as to improve their performance.

This proposal is organized into four sections. In the next section, we develop the problems driv-
ing our study by briefly reviewing the prior research on distributed software development and on
FLOSS development in particular. We then discuss the theoretical perspectives that will guide our
study, followed by the proposed research design, including details of the study phases, sampling
strategy, and data elicitation and analysis plans. We conclude by presenting expected results and
contributions.

2

1. The challenge of distributed software development
Distributed teams are groups of geographically dispersed individuals working together over time

towards a common goal. Though distributed work has a long history [e.g., 13], advances in informa-
tion and communication technologies have been crucial enablers for recent developments of this or-
ganizational form [14]. Distributed teams seem particularly attractive for software development
because the code can be shared via the systems used to support team interactions [15, 16]. While
distributed teams have many potential benefits, distributed workers face many real challenges. Wat-
son-Manheim, Chudoba, & Crowston [17] argue that distributed work is characterized by numerous
discontinuities: a lack of coherence in some aspects of the work setting (e.g., organizational mem-
bership, business function, task, language or culture) that hinders members in making sense of the
task and of communications from others [18], or produce unintended information filtering [19] or
misunderstandings [20]. These interpretative difficulties in turn make it hard for team members to
develop shared mental models of the developing project [21, 22]. A lack of common knowledge
about the status, authority and competencies of team participants can be an obstacle to the develop-
ment of team norms [23] and conventions [24].

The presence of discontinuities seems likely to be particularly problematic for software develop-
ers [18]. Numerous studies of the social aspects of software development teams [18, 25-28] conclude
that large system development requires knowledge from many domains, which is thinly spread
among different developers [25]. As a result, large projects require a high degree of knowledge inte-
gration and the coordinated efforts of multiple developers [29]. More effort is required for interac-
tion when participants are distant and unfamiliar with each others work [30, 31]. The additional
effort required for distributed work often translates into delays in software release compared to tra-
ditional face-to-face teams [32, 33]. The problems facing distributed software development teams
are reflected in Conway’s law, which states that the structure of a product mirrors the structure of the
organization that creates it. Accordingly, splitting software development across a distributed team
will make it hard to achieve an integrated product [9].

In response to the problems created by discontinuities, studies of distributed teams stress the
need for a significant amount of time spent learning how to communicate, interact and socialize us-
ing CMC [34]. Research has shown the importance of formal and informal coordination mechanisms
and information sharing [26] for a project’s performance and quality. Communication can help clar-
ify potential uncertainties and ambiguities and socialize members with different cultures and ap-
proaches into a cohesive team [35-39]. Successful distributed teams share knowledge and
information and create new practices to meet the task and social needs of the members [40]. How-
ever, the processes of knowledge sharing and socialization for distributed teams are still open topics
for research [e.g., 41].

Research on FLOSS development
The nascent research literature on FLOSS has addressed a variety of questions. First, researchers

have examined the implications of FLOSS from economic and policy perspectives. For example,
some authors have examined the implications of free software for commercial software companies or
the implications of intellectual property laws for FLOSS [e.g., 42–44]. Second, various explanations
have been proposed for the decision by individuals to contribute to projects without pay [e.g., 45-
49]. These authors have mentioned factors such as personal interest, ideological commitment, devel-
opment of skills [50] or enhancement of reputation [49]. Finally, a few authors have investigated the
processes of FLOSS development [e.g., 7, 51], which is the focus of this proposal.

Raymond’s [7] bazaar metaphor is the most well-known model of the FLOSS process. As with
merchants in a bazaar, FLOSS developers are said to autonomously decide how and when to con-
tribute to project development. By contrast, traditional software development is likened to the
building of a cathedral, progressing slowly under the control of a master architect. While popular,
the bazaar metaphor has been broadly criticized. According to its detractors, the bazaar metaphor
disregards important aspects of the FLOSS process, such as the importance of project leader control,
the existence of de-facto hierarchies, the danger of information overload and burnout, and the possi-
bility of conflicts that cause a loss of interest in a project or forking [52, 53].

3

Recent empirical work has
begun to illuminate the struc-
ture and function of FLOSS
development teams. Gallivan
[54] analyzes descriptions of
the FLOSS process and sug-
gests that teams rely on a vari-
ety of social control
mechanisms rather than on
trust. Several authors have de-
scribed teams as having a hier-
archical or onion-like structure
[55-57], as shown in Figure 1.
At the centre are the core de-
velopers, who contribute most
of the code and oversee the de-
sign and evolution of the project. The core is usually small and exhibits a high level of interaction,
which would be difficult to maintain if the core group were large. Surrounding the core are the co-
developers. These individuals contribute sporadically by reviewing or modifying code or by contrib-
uting bug fixes. The co-developer group can be much larger than the core, because the required level
of interaction is much lower. Surrounding the developers are the active users: a subset of users who
use the latest releases and contribute bug reports or feature requests (but not code). Still further from
the core are the passive users. The border of the outer circle is indistinct because the nature and vari-
ety of FLOSS distribution channels makes it difficult or impossible to know the exact size of the
user population. As their involvement with a project changes, individuals may move from role to
role. However, core developers must have a deep understanding of the software and the development
processes, which poses a significant barrier to entry [58, 59]. This barrier is particularly troubling
because of the reliance of FLOSS projects on volunteer submission and “fresh blood” [60]. It is im-
portant to note that this description of a project team (Figure 1) is based on a few case studies. While
the model has good face validity, it has not been extensively tested. We plan to determine how well
it holds up for a wider range of projects, as part of our investigation of how the social structure of a
project team influences team effectiveness.

The other major stream of research examines factors for the success of FLOSS in general
(though there have been few systematic comparison across multiple projects, e.g., [61]). The popu-
larity of FLOSS has been attributed to the speed of development and the reliability, portability, and
scalability of the resulting software as well as the low cost [62-68]. In turn, the quality of the soft-
ware and speed of development have been attributed to two factors: that developers are also users of
the software and the availability of source code. First, FLOSS projects often originate from a per-
sonal need [69, 70], which attracts the attention of other users and inspire them to contribute to the
project. Since developers are also users of the software, they understand the system requirements in
a deep way, eliminating the ambiguity that often characterizes the traditional software development
process: programmers know their own needs [71]. (Of course, over-reliance on this mode of re-
quirements gathering may also limit the applicability of the FLOSS model.) Second, in FLOSS pro-
jects, the source code is open to modification, enabling users to become co-developers by developing
fixes or enhancements. As a result, FLOSS bugs can be fixed and features evolved quickly. Active
users also play an important role [72]. Research suggests that more than 50 percent of the time and
cost of non-FLOSS software projects is consumed by mundane work such as testing [73]. The
FLOSS process enables hundreds of people to work on these parts of the process [74]. Intriguingly,
it has been argued that the distributed nature of FLOSS development may actually lead to more ro-
bust and maintainable code. Because developers cannot consult each other easily, it may be that they
make fewer assumptions about how their code will be used and thus write more robust code that is
highly modularized [74].

Core developers

Co-developers

Active users

Passive users

Initiator

Release
coordina-

tor

Figure 1. Hypothesized FLOSS development team structure.

4

Specific research questions

It is noteworthy that much of the literature on FLOSS has been written by developers and con-
sultants directly involved in the FLOSS community. These contributions are significant as they point
out the economic relevance of FLOSS as well as the most striking aspects of the new development
process. Yet many of these studies seem to be animated by partisan spirit, hype or skepticism [75].
There are only a few well-documented case studies [e.g., 76], most of which discuss successes rather
than failures. Finally, with a few exceptions [e.g., 77, 78], the proposed models are descriptive and
based on a small number of cases. This is both indicative of the relative novelty of the issue and the
lack of a clear theoretical framework to describe and interpret the FLOSS phenomenon [79]. Our
study is intended to fill some of these gaps by providing a theoretically-based comparative study of
FLOSS development practices. Based on the literature reviewed above, we have identified the fol-
lowing specific research questions that address our initial general question:

What practices make some distributed FLOSS development teams more effective than oth-
ers? Specifically:
1. what roles and patterns of social relations,
2. what practices for building and maintain shared mental models
3. what practices for coordination and communication and
4. what practices for socialization of new member
distinguish more and less effective FLOSS project teams?

2. Conceptual development
Our study will identify work practices in effective FLOSS projects. To do so, we have chosen to

analyze developers as comprising a work team. Much of the literature on FLOSS has conceptualized
developers as forming communities, which is a useful perspective for understanding why developers
choose to join or remain in a project. However, for the purpose of this study, we view the projects as
entities that have a goal of developing a product, whose members are interdependent in terms of
tasks and roles, and who have a user base to satisfy, in addition to having to attract and maintain
members. These aspects of FLOSS projects suggest analyzing them as work teams. Guzzo and Dick-
son [80, pg. 308] defined a work team as “made up of individuals who see themselves and who are
seen by others as a social entity, who are interdependent because of the tasks they perform as mem-
bers of a group, who are embedded in one or more larger social system (e.g. community, or organi-
zation), and who perform tasks that affect others (such as customers or coworkers)”.

Given this perspective, we draw on Hackman’s [1] model of effectiveness of work teams as a
conceptual basis for our study. This model was initially presented as sets of factors, but these factors
to point to work practices that are important for team effectiveness. Following on Crowston and
Kammerer [2], we also use coordination theory [3] and collective mind [4] to extend Hackman’s
model by further elaborating team practices relevant to effectiveness in software development. In
this section, we describe these theories, their applicability to FLOSS development and their implica-
tions for our study. We defer discussion of data elicitation and analysis to the following section.

Team effectiveness model
Researchers in social and organizational psychology have studied teams and their performance

for decades and have developed a plethora of models describing and explaining team behavior and
performance. One of the most widely used normative models was proposed by Hackman [1], shown
in Figure 2 below. Hackman’s [1] model is broadly similar to other models [81], such as [82], [83]
or [84]. However, Hackman’s model seems especially fitting because of its intended purpose of
identifying factors related to team effectiveness, broadly defined, and its inclusion of team process
factors.

Hackman’s [1] model is presented in an input-process-output framework. The output explained
by the model is team effectiveness, which is clearly a key variable for our study: if we cannot distin-
guish more and less effective teams, we cannot identify work practices related to effectiveness. An
attractive feature of this model is that effectiveness is conceptualized along multiple dimensions, not

5

just task output. Hackman also includes the team’s continued capability to work together and satis-
faction of individual team members’ personal needs. These three types of output correspond well to
the effectiveness measures for FLOSS projects identified by Crowston, Annabi and Howison [85],
who proposed measures including system quality (task output), developer satisfaction (satisfaction of
individual needs), and number of developers, developer turnover and progress of the project through
stages of development (e.g., alpha to beta to production), all indicative of the continued ability of the
team to work together.

Hackman’s model includes two sets of input factors, organizational context (reward, educational
and information systems) and group design (task structure, team composition and team norms). The
organizational context factors seem possibly important, though FLOSS teams typically mix members
from a variety of organizational contexts, so these contextual factors may not be under the control of
the projects. Therefore, we plan to focus initially on team design, which includes three promising
factors to explore: task structure, team composition and team norms. All FLOSS teams perform
much the same task, namely software development, but we anticipate seeing important differences in
the way teams structure the task. To analyze these structures, we will use coordination theory (dis-
cussed below). As well, based on the review above, we anticipate seeing differences in practices re-
lated to team composition and development of team norms. For example, teams may differ in the
roles adopted by members or in the way new members are socialized into teams.

The intermediary factors in Hackman’s model are three process criteria (i.e., indications that the
process is working as it should): “the level of effort brought to bear on the team task, amount of
knowledge and skill applied to task work, and appropriateness of the task performance strategies
used by the group” [1]. Prior work has noted that distributed teams often need to expend more effort
to be effective, suggesting the importance of this variable. Amount of knowledge and skill applied
also seem critical, though possibly difficult to measure and again perhaps not directly under the con-
trol of the project. We will again use coordination theory to analyze task performance strategies.

Finally, Hackman proposes factors that moderate the relationship between process and output,
namely material resources, and between inputs and process, namely team synergy. For software de-
velopment, relevant material resources would seem to be limited to development tools, which are
readily available, thanks to systems like SourceForge (http://sourceforge.net/) and Savannah

Process criteria
of effectiveness

• Level of effort brought
to bear on the team task

• Amount of knowledge
and skill applied to task
work

• Appropriateness of the
task performance
strategies used by the
team

Organizational context
A context that supports
and reinforces competent
task work, via:
• Reward system
• Education system
• Information system

Group design
A design that prompts and
reinforces competent work
on the task, via:
• Structure of the task
• Composition of the

group
• Group norms about

performance processes
Group synergy

Assistance to the group by
interacting in ways that:
• Reduce process losses
• Create synergistic

process gains

Material resources
Sufficiency of material
resources required to
accomplish the task well
and on time

Group effectiveness
• Task output acceptable

to those who receive or
review it

• Capability of members
to work together in the
future is maintained or
strengthened

• Members’ needs are
more satisfied than
frustrated by the group
experience

Figure 2. Hackman’s [1] normative model of group effectiveness.

6

(http://savannah.gnu.org/), which host thousands of projects. The review of software development
presented above makes clear that practices for the development and maintenance of shared mental
models will play an important role in enabling team synergy. We will apply collective mind [4] the-
ory to conceptualize these models, as discussed below. In the remainder of this section, we will dis-
cuss the two supporting theories we will use to extend Hackman’s model.

Coordination theory
As mentioned above, we will use coordination theory to analyze the structure of the tasks and

coordination mechanisms used within teams. Many software process researchers have stressed the
importance of coordination for software development [e.g., 25, 71]. For example, Kuwabara [86]
states that, “coordination is a crucial element sustaining collective effort giving the Linux its integ-
rity that unfolds the seemingly chaotic yet infinitely creative process of creation”. The knowledge
based-view of the firm [87] also emphasizes coordination mechanisms as important for integrating
the knowledge of individuals into an organization’s products.

Coordination theory provides a theoretical framework for analyzing coordination in processes.
We will use the model presented by Malone and Crowston [3], who define coordination as “manag-
ing dependencies.” They analyzed processes in terms of actors performing interdependent tasks.
These tasks might also require or create resources of various types. For example, in software devel-
opment, developers might require bug reports into order to create patches for the bugs. In this view,
actors in organizations face coordination problems arising from interdependencies that constrain
how tasks can be performed. Interdependencies can be between tasks, between tasks and the re-
sources they need or between the resources used. Interdependencies may be inherent in the structure
of the problem (e.g., components of a system may interact with each other, constraining how a par-
ticular component is designed [88]) or they may result from the assignment of tasks to actors and
resources (e.g., two engineers working on the same component face constraints on the changes they
can propose without interfering with each other). To overcome these coordination problems, actors
must perform additional work, which Malone and Crowston [3] called coordination mechanisms, or
what Faraj and Xiao [89] call coordination practices. For example, if particular expertise is necessary
to fix a bug (a task-actor dependency), then a developer with that expertise must be identified and
the bug routed to him or her to work on. For any given dependency, there may be a range of avail-
able mechanisms, so project teams are expected to differ in their choice of mechanisms. It is unlikely
that there is a single best set of mechanisms, but rather the fit of the selected mechanisms with other
team practices is expected to have implications for effectiveness.

Collective mind
The second theory we will apply is collective mind, a theory of the functioning of shared mental

models. Shared mental models, as defined by Cannon-Bowers & Salas [90], “are knowledge struc-
tures held by members of a group that enable them to form accurate explanations and expectations
for the task, and in turn, to coordinate their actions and adapt their behavior to demands of the task
and other group members” (p. 228). Without shared mental models, individuals from different teams
or backgrounds may interpret tasks differently, making collaboration and communication difficult
[91] and diminishing individual contributions to the collective goal. Shared mental models are ex-
pected to lead to better team performance in general [90] and for software development in particular.
Curtis, et al. [21], note that, “a fundamental problem in building large systems is the development of
a common understanding of the requirements and design across the project group” (p. 52). They go
on to say that, “transcripts of group meetings reveal the large amounts of time designers spend trying
to develop a shared model of the design” (p. 52).

Following on work by Crowston and Kammerer [2], we intend to apply Weick and Robert’s [4]
collective mind theory to analyze this issue. We have chosen this theory for several reasons. First,
previous conceptions of group mind have been controversial because they seemed to imply the exis-
tence of some super-individual entity [92]. By contrast, collective mind is described as an individ-
ual’s “disposition to heed,” hence an emphasis on “heedful” behaviors. If each member of a team has
the desire and means to act in ways that further the goals and needs of the team (i.e., “heedfully”),
then that team will exhibit behavior that might be described as collectively intelligent, even though it

7

is the individuals who are intelligent, not the team per se. Second, Weick and Roberts [4] suggest
that collective mind is beneficial for situations where there is need for high reliability, non-routine
work, and interactive complexity (the combination of complex interactions with a high degree of
coupling), all characteristics of much of software development. Finally, the elements of the theory fit
cleanly into Hackman’s model, as we now discuss.

Weick and Roberts [4] identify three overlapping individual behaviours that epitomize collective
mind: 1) contribution (an individual member of a team contributes to the team outcome, one of
Hackman’s process factors), 2) representation (individuals build personal mental models of the team
and its task, which we view as an important factor for Hackman’s team synergy) and
3) subordination (an individual puts the team’s goals ahead of individual goals, a team norm that
corresponds to Hackman’s team design input). Although conceptualized separately, these three con-
cepts overlap and reinforce one another to some degree. For example, it is difficult to imagine heed-
ful contributions from even highly talented and motivated individuals with weak representations of
the team’s needs and structure. While these actions go on in any group setting, the issue for collec-
tive mind is how carefully, appropriately and intelligently they are done. To the extent they are, the
team will display collective mind.

Given the importance of collective mind, we will look not only for practices that exhibit it, but
also those that build and maintain it. For the later purpose, Brown and Duguid’s [93] model of com-
munities of practice seems useful. Brown and Duguid [93] suggested three overlapping social proc-
esses that underlie work practices: social construction, narration, and collaboration. Construction (or
socialization) addresses the issue of people joining a team needing to understand how they fit into
the process being performed (i.e., their representation, contribution and subordination). New mem-
bers need to be encouraged and educated to interact with one another to develop a strong sense of
“how we do things around here” (i.e., representation) [13]. Second, Brown and Duguid [93] stress

Concepts Specific phenomena Source of data (see section 3)

Code quality
Project usage
User satisfaction
Project recognition

Statistical analysis of code and
project demographics

Continued system development
Group membership turnover

Statistical analysis of project
demographics

Team effective-
ness

Developer satisfaction
Developer recognition

Developer interviews and
survey

Task structure
Process activities and dependencies
Actors and roles

Process mapping

Composition of team
Experience
Cross-membership

Social network analysis,
statistical analysis of developer
demographics

Team design

Team norms about performance
Socialization of new members

Content analysis of interactions,
interviews and observation

Number of developers
Level of effort of developers (quantity

and quality)

Social network analysis,
statistical analysis of developer
interactions and code changes

Process criteria

Appropriate coordination mechanisms
Team communication patterns

Process mapping, social network
analysis

Team synergy Shared mental models (representation)
Socialization, narration, collaboration

Content analysis of interactions,
interviews and observation

Table 1. Concepts to be explored in the study and sources of data.

8

the importance of narration. To keep the collective mind strong and viable, important events must be
“replayed” and reanalyzed, and the history that defines who the group is and how it does things (rep-
resentation) must be continually reinforced, reinterpreted, and updated and shared with newcomer.
Finally, Brown and Duguid [93] stress the importance of collaboration, based on narration, thus
leading to the team synergy identified in Hackman’s model.

Table 1 summarizes the constructs we will explore in the study. In the following section we will
discuss how we plan to elicit and analyze data to address these constructs, as indicated in the final
column of Table 1.

3. Research design
In this section, we will discuss the design of the three phases of the proposed study, addressing

the basic research strategy, concepts to be examined, sample populations and proposed data collec-
tion and analysis techniques. In this section, we first discuss the goals and general design of each
phase. We then present the details of how data will be elicited and analyzed.

Software development is a vast topic. As an initial focus for our work, we plan to examine the
software bug fixing process, which provides “a microcosm of coordination problems” [94]. The bug
fixing process has been chosen as a starting point because a quick response to bugs has been men-
tioned as a particular strength of the FLOSS process: as Raymond [7] puts it, “given enough eye-
balls, all bugs are shallow”. As well, it is a process that involves the entire community, the core and
co-developers as well as active users. Finally, it is one that the PI [94] and others [e.g., 95] have pre-
viously studied in a commercial environment, providing a baseline for comparisons. However, as the
project progresses, we plan to expand our examination to include practices related to the entire soft-
ware development process.

Overall design
To address our research questions, we will conduct a three-phase study of FLOSS project teams.

During Phase I, we will conduct a census of FLOSS projects in order to identify 1) development
teams of interest and 2) concepts and relationships that seem promising for further in-depth study.
During Phase II, we will conduct an in-depth multiple case study [5] on a small number of distrib-
uted FLOSS development teams (approximately 8) to test and extend the model developed above.
During Phase III, we intend to collect and analyze data on hundreds of teams using the metrics and
tools developed in Phase II in order to generalize those findings. Phase III will also include a devel-
oper survey. Throughout the three phases we plan to check our design and preliminary results with
frequent engagement with the FLOSS community through a project advisory board of developers.

Phase I: Searching for interesting teams and variables
In Phase I, we will examine a large number of projects to identify those that will be most inter-

esting for further study, and to identify specific practices that seem to be most relevant for further
understanding effectiveness. In order to provide a reliable basis for generalization, the sample in this
phase should be as large and as representative as possible. Ideally, we would analyze the population
of FLOSS projects, which unfortunately is impossible to identify. Instead, we will use SourceForge
and Savanah as primary sources, along with a number of projects that use their own tools, e.g., the
Apache Foundation projects. Because many SourceForge projects are effectively defunct, we will
restrict our attention in this phase to active projects.

Automatic data collection will be needed to gather data from such a large sample. We will de-
velop scripts to collect and extract data automatically. Fortunately, a large volume of raw data is
easily obtained in machine-readable format, though the requirement for automatic extraction will
limit the kinds of data that we will be able to elicit during this phase. As other researchers are also
examining the problem of automatic data collection, we intend to work with them rather than build-
ing all tools from scratch. Similarly, we plan to make our tools and raw data available to other re-
searchers under a FLOSS license. We also plan to explore the possibility of working with Syracuse
University’s Center for Natural Language Processing to develop tools for automatically analyzing
unstructured textual data contained in emails, bug reports and other textual data [e.g., 96].

9

The output of Phase I will be an indication of which variables seem to be good measures of pro-
ject effectiveness and which other variables seem to be related, suggesting relevant practices for
further study. As an example of this approach, we have conducted a pilot study using Social Net-
work Analysis (SNA) to analyze the structure of FLOSS development teams from their interactions
in Bug Trackers and developer mailing lists [97]. For the study, we downloaded data from all
SourceForge projects that had more than 7 listed developers and more than 100 bugs in their bug
tracking system (these two filters eliminated all but 140 projects). The analysis revealed that teams
vary significantly in centralization, with some teams highly centralized (all communications revolv-
ing around just one or two developers) and some relatively decentralized (with interactions between
project members without a clear centre, or with multiple centers). Furthermore we found that cen-
tralization was negatively correlated with project size. This pilot is indicative of the analysis in-
tended for Phase I, as we identified and measured a theoretically interesting concept (team
centralization) and found interesting patterns. This analysis alone does not provide much insight into
how the underlying practices work, but instead suggests phenomena that merit deeper investigation
in Phase II. For example, the negative correlation between size and centralization suggests that teams
experience episodes of growth and modularization (i.e., they are shallots rather than the onion of
Figure 1), but more intensive investigation is needed to understand these processes and their impli-
cations for effectiveness.

In addition, in Phase I we will be able to identify a small number of projects that seem to have an
interesting combination of factors, e.g., projects that seem to be particularly effective or that have
interesting combinations of factors for comparison. For example, the pilot study identified a few
teams that are especially centralized and especially decentralized for the number of contributors.

Phase II: Theory refinement and development through comparative case studies
The goal of Phase II is to examine the underlying practices of a smaller number of projects in

more detail. In this phase we will employ a theoretical sampling strategy to choose a few FLOSS
development teams to study in depth. Studying 8 teams would allow us to compare teams with
combinations of three factors identified in Phase I (a 2x2x2 comparison). By limiting the number of
projects, we will be able to use more labour-intensive data analysis approaches. Though the specific
projects to be selected will be identified in Phase I, we can suggest some considerations that seem
likely to be important.
• First, to be able to address our research question, we will compare more and less effective teams

based on the measures of effectiveness proposed by Crowston et al. [85].
• Second, we will focus on teams with multiple core developers in which coordination and sociali-

zation problems have become pressing. A preliminary examination of SourceForge projects [63]
suggests 8 or more core developers as an initial cutoff.

• Third, we will choose projects for which the data we need for our analysis are available (some
projects do not allow access to mailing list archives and other data). We plan to check with de-
velopers to ensure that these archives give a fair picture of the interactions. Since some projects
do have face-to-face meetings, our ability to attend these meetings and observe the interactions
will also be a factor.

• Finally, since we plan to interview developers, the willingness of developers to participate in the
study will be important. Fortunately, we have already secured letters of support from a number
of developers.
This phase will be a combination of theory testing (following up on ideas from the literature re-

viewed above) and theory development (examining the data inductively to develop new ideas). The
analysis will be aimed at the identification and detailed description of work practices that affect team
effectiveness, and development of a set of metrics and measurement tools for these practices.

Phase III: Developer and project study
In the final phase, we will examine a larger number of projects to test the generality of the prac-

tices identified in Phase II and their relationship to project effectiveness. We will also follow up on
the developer interviews through a survey to test hypotheses formulated during Phase II.

10

Project study. In this phase, we plan to examine a large number of projects for evidence of the
practices identified in Phase II. Again, we would like to have as large a sample as possible. How-
ever, if important data have to be hand coded, it will be necessary to restrict the sample size for
tractability. In this case, we plan to extend the sampling strategy of Phase II and examine more and
less effective projects with variation along relevant dimensions identified in Phases I and II. In order
to provide a reliable basis for generalization, attention will be paid to developing a representative
sample of projects, which requires developing a sampling frame, stratification strategies, etc. We
plan to analyze at least 125 projects1 to provide sufficient statistical power for any comparisons we
might make, though the precise sample size will depend on the coding effort required per project,
which is difficult to estimate in advance.

Developer study. The second component of Phase III will be a survey of FLOSS developers to
test hypotheses developed in Phase II. Because of the difficulty of creating a sampling frame of
FLOSS developers, we will likely have to rely on a convenience sample (e.g., by soliciting respon-
dents from FLOSS mailing lists and websites, at conferences, etc.). Although we will use a conven-
ience sample, we will be able to assess its representativeness by comparing characteristics of our
respondents to other published reports [e.g., 98]. A sample of about 1000 will be required to estimate
proportions with a confidence interval of ±3%. To encourage a large response, we plan to seek the
support of FLOSS thought leaders (e.g., from our advisory board or through SlashDot or Source-
Forge) to promote participation. Again, there are several other research teams interested surveying
FLOSS developers, so we plan to collaborate rather than compete for attention (especially because
the attention of developers may be quite limited). For ease of administration, the questionnaire will
be carried out via the Web. Fortunately, all members of the target population can be assumed to have
Internet access and to be comfortable with the use of Web, so this choice of administration should
not create any sampling biases.

Data collection
Practices are often hard to study because they are taken for granted, and so escape intense obser-

vation. They go on all around us, but without notice unless something goes wrong. For on-line teams
though, observation is facilitated because much of the team’s interactions are funneled through a
CMC system, and so structured and captured, as are the results of their work. Retrospective compari-
sons can be easily made by comparing data captured at different times, unbiased by the possibly se-
lective recollections of informants. Our problem then is ensuring that these interactions present a
complete picture of the team and then making sense of the vast pool of data created in the course of
developers’ interactions to answer interesting questions about their practices. To explore the con-
cepts identified in the conceptual development section of this proposal, we will collect a wide range
of data: project demographics, developer demographic data, interaction logs, code, project plans and
procedures, as well as developer interviews, observation and participant observation. In the remain-
der of this section, we will briefly review each source. Table 2 shows the mapping from each data
source to analysis. The table also indicates which data sources will be used in the three phases of the
study.

Project demographics. We will collect basic descriptive data about each project, such as its
topic, intended use environment, programming language, etc. Often these data are self-reported by
the developers to guide potential users (e.g., on SourceForge or FreshMeat, http://freshmeat.net/); in
other cases, they can be inferred. We will also collect data indicative of the success of the project
[61], such as its level of activity, number of downloads and development status, as well as any user
ratings, such as FreshMeat user ratings. Again, SourceForge explicitly tracks these figures, but for
other projects they may have to be inferred.

1 A sample size of 63 per group is necessary to have an 80% chance of detecting an effect size (i.e., 80 % power)

of 0.5 standard deviations between two groups at a 5% confidence level (assuming equal variance). The same
sample size at the same power and confidence levels will detect a correlation of 0.22 or an effect size of 0.25
standard deviations per one standard deviation change in the independent variable in a regression study (from
http://calculators.stat.ucla.edu/powercalc/ and http://hedwig.mgh.harvard.edu/sample_size/size.html).

11

Developer demographic data. We will collect the list of developers for each project and their as-
signed roles, if any, plus any demographic information available. SourceForge collects skills ratings
for a few developers; since only a minority of developers are rated at all, these are mostly interesting
as a reflection of how well known a developer is. We also will collect developer’s PGP or GnuPG
key to examine the web of trust as a reflection of the developer’s social network [99] (see
http://www.chaosreigns.com/code/sig2dot/ for examples).

Developer interactions logs. The most voluminous source of data will be collected from archives
of CMC tools used to support the team’s interactions for FLOSS development work [33, 74]. These
data are useful because they are unobtrusive measures of the team’s behaviours [100]. Mailing list
archives will be examined, as email is a primary tool used to support team coordination [101]. Such
archives contain a huge amount of information: e.g., the Linux kernel list receives 5-7000 messages
per month. From mailing lists, we will extract the date, sender and any individual recipient’ names,
the sender of the original message, in the case of a response, and text of each message. From bug
tracking systems (e.g., Apache’s GNATS, Linux kernel’s Jitterbug, Mozilla’s Bugzilla as well as
Sourceforge’s Tracker) we will extract data about bug typologies, who submitted bugs, who fixed
them and the steps in the bug fixing process. We will examine features request archives and logs
from other interaction tools, such as chat sessions. While in most cases these archives are public, we
plan to consult with the Syracuse University Human Subjects Institutional Review Board to deter-
mine what kind of consent should be sought before proceeding with analysis.

Source code. A major advantage of studying open source software is that we have access to the
source code itself. Many projects use a source code control system such as CVS, which stores inter-
mediate versions of the source and the changes made. From these logs, we will be able to extract
data on the kinds of contributions to understand the software structure and the date and name of the
contributors to understand the role of individual developers [76, 102, 103]. Raw code poses numer-
ous challenges to interpretation [104]. For example, not all projects assign authorship in the CVS
tree. Again, we intend to leverage our analysis with work being carried out by other researchers
[e.g., 105].

Project plans and procedures. Many projects have stated release plans and proposed changes.
Such data are often available on the project’s documentation web page or in a “status” file used to
keep track of the agenda and working plans [60]. For example, Scacchi [11] examined requirements
documentation for FLOSS projects. We will also examine any explicitly stated norms, procedures or
rules for taking part in a project, such as the process to submit and handle bugs, patches or feature
request. Such procedures are often reported on the project’s web page (e.g.,
http://dev.apache.org/guidelines.html).

Developer attitudes and opinions. While the data sources listed above will provide an extensive
pool of data, they are all indirect. Interviews and surveys are important to get rich, first-hand data
about developers’ perceptions and interpretations. We plan to conduct interviews with key infor-
mants in the selected projects. Interviews will be conducted mainly by e-mail, but we also plan to
attend one or two FLOSS conferences each year (e.g., the O’Reilly Open Source Convention or
ApacheCon) to interview FLOSS developers face-to-face. The interviews will be scheduled after the
initial round of data analysis to ensure that we have a sufficient understanding of the process to be
able to pose intelligent questions. As part of the interviews protocol, we will employ the critical in-
cident technique, in which developers are asked to describe personally experienced specific incidents
which had an important effect on the final outcome [106]. We will also explore the developer’s ini-
tial experiences of participation in FLOSS, the social structure and norms of the team, processes of
knowledge exchange and socialization (especially the role of observation, which leaves no traces in
the interaction logs), knowledge of other members’ participation [107, 108] and impressions of pro-
ject effectiveness. As well, interviews will be used to verify that the archives of interaction data give
a fair and reasonably complete record of day-to-day interactions. In later phases of the project, a
Web survey will be used to elicit attitudes and opinions from a large sample of developers.

Observation. We have found from our initial pilot study (described below under Results from
Prior Funding) that developers interact extensively at conferences. Indeed, Nardi and Whittaker

12

[109] note the importance of face-to-face interactions for sustaining social relations in distributed
teams. The FreeBSD developer Poul-Henning Kamp has also stated that phone calls can be occa-
sionally used to solve complex problems [110]. These interactions are a small fraction of the total,
but they may still be crucial to understanding the team’s practices. We plan to use attendance at de-
veloper conferences as an opportunity to observe and document the role of face-to-face interaction
for FLOSS teams.

We also intend to carry out a virtual ethnographic study of developer socialization and interac-
tion. One student involved with the project has already virtually joined several development teams
(with the permission of the project leaders and the knowledge of other members) and is currently
participating in their normal activities while observing and recording these activities (following a
protocol approved by the Syracuse University Human Subjects Review Board). In this way, we will
study and learn first hand the socialization and coordination practices of these teams. We will track
these teams through the various stages of development status, from planning through produc-
tion/stable stage, observing how new members join the teams and how they contribute to the team
output.

Analysis
While voluminous, the data described above are mostly at a low level of abstraction. The col-

lected data will be analyzed using a variety of techniques in order to raise the level of conceptualiza-
tion to fit the theoretical perspectives described in section 2 and to address our research questions.

Statistical analysis. Quantitative data will be analyzed statistically. For example, based on the
collected data, we will develop a scale for project effectiveness (e.g., combining the number of users
or downloads, level of activity, development status, users’ ratings and developer ratings), so as to
distinguish between more and less effective projects. This measure is a key variable in our study, so
we plan to spend some time exploring the implications of various alternative measures (as well as
augmenting quantitative data with qualitative data). For example, we have started an analysis of time
required to fix bugs as one possible indication of the effectiveness of the development processes.
Fortunately, for the purpose of Phase I we need only to identify more or less effective teams rather
than make fine distinctions in the precise level of effectiveness, so the measure need not be ex-
tremely reliable right away. Variation among projects will be examined statistically to identify prac-
tices associated with effective teams.

Phase
Data source Analysis approach

I II III

Project demographics Statistical ✓ ✓

Developer demographics Statistical ✓ ✓

Social network analysis ✓ ✓
Developer interaction logs

Content analysis, process mapping ✓ ✓

Source code Process mapping
Code quality

✓ ✓ ✓

Project plans and procedures Content analysis ✓ ✓

Developer interviews Content analysis, process mapping,
cognitive mapping ✓

Developer survey Statistical ✓

Observation of developer interactions Content analysis, process mapping,
cognitive mapping ✓

Participant observation Content analysis, process mapping,
cognitive mapping ✓

Table 2. Data elicitation and analysis by project phase.

13

Content analysis. In Phase II, the project will rely heavily on content analysis of the text in inter-
action archives and interviews to develop insights on the extent and development of common knowl-
edge, coordination and communication practices and socialization (e.g., the way projects are created,
introduction of new members, members leaving and community building). Data will be analyzed
following the process suggested by Miles and Huberman [111], iterating between data collection,
data reduction (coding), data display, and drawing and verifying conclusions. The researchers will
develop an initial content analytic framework to discover the patterns of the various variables (sug-
gested in phase I) present in the data. The initial (deductive) framework will be based on work on
Asynchronous Learning Networks investigating social, cognitive and instructional processes of vir-
tual teams [112]. In addition we will incorporate indicators from content analytic frameworks previ-
ously used to investigate shared mental models [e.g., 113]. We will start the data analysis using the
initial content analytic scheme and modify the scheme as new categories and indicators emerge in
the data [111]. Further categories will be added and other data will be collected as preliminary find-
ings in the analysis suggest. We will use the thematic unit of analysis while conducting the content
analysis to capture the various elements of the variables under investigation as appropriate. To in-
crease the validity and reliability of the coding scheme we will conduct intercoder reliability tests
and modify the content analytic scheme until we reach an 85% agreement level [114].

Social network analysis (SNA). SNA will be used to analyze patterns of interactions (e.g., who
responds to whose email) in order to reveal the structure of the social network of projects. Madey,
Freeh & Tynan [115] applied this technique to connections between projects, but not within projects.
A pilot study using this technique was describe above. We are particularly interested in using social
network information to identify various structural roles in the team and how individuals fill these
roles over time. This analysis of structural roles should provide a useful counterpoint to descriptions
of formal roles and process roles described above. We will assess an individual’s centrality and the
project’s hierarchy, which seems to mediate the effect of role and status on individual performance
within virtual teams [14], the way contributions are distributed among developers and the roles as-
sumed by core developers. Analysis of these aspects is important to assess the general applicability
of studies such as Mockus et al. [76], who argue that the development community participation in
the Apache project is more significant in defect repairing than in the development of new function-
alities (p. 322). The results of such analyses will support us in the identification of the social rela-
tions patterns and the way such patterns develop.

Process maps. The open source software development processes will be mapped based on an in-
ductive coding of the steps involved. For example, to map the bug fixing process, we will examine
how various bugs were fixed as recorded in the bug logs, email messages and the code. Van de Ven
and Poole [116] describe in detail the methods they used to develop and test a process theory of how
innovations develop over time. Yamauchi et al. [117] coded messages to understand the develop-
ment processes of two FLOSS projects. Process traces can be clustered using optimal matching pro-
cedures [118] to develop clusters of processes. These process descriptions can be enriched with
descriptions of the process from developers’ reports of critical incidents and of the process in general
[119].

In our analyses, we will compare the processes of effective teams to those of less effective
teams. We will also identify which individuals perform which activities to identify different process
roles, thus providing a counterpoint to the SNA roles described above. We will also identify the co-
ordination modes and task assignment practices involved in software maintenance (i.e., the number
of features request assigned, types of requests, number and types of spontaneous contributions), the
adoption of other formal coordination modes (from the analysis of the written policies regarding
contributions to projects), as well as the degree of interdependency among the tasks (based on an
analysis of communication patterns among different roles and different contributors). Another ques-
tion we intend to answer is the extent to which the use of various distributed software development
tools (e.g., CVS, bug tracking databases) structures the process.

Cognitive maps. Cognitive maps will be developed from interview data to represent and compare
the mental models of the developers about the project and project team so as to gauge the degree of

14

common knowledge and the development of shared mental models [120-123]. Metrics (e.g., number
of heads, tails, domain and centrality) provided by existing software packages (e.g. Decision Ex-
plorer or CMAP2) and ad hoc developed metrics will be used to analyze and compare the different
maps. In particular, the comparisons among different team members’ maps will provide insights
about eventual shared mental models and collective mind acting within teams. We will also derive
collective maps for each project. Collective maps usually represent perspectives that are common to
all the members of a team. Shared perspectives derive from the comprehension of mutual positions
and roles, which are fundamental to create synergies within the team. Collective maps for more and
less effective team will be compared so as to explore the relationship between the existence of col-
lective minds and project effectiveness. The PI has some experience studying mental models [2] but
for this analysis in particular will work with a collaborator, Professor Barbara Scozzi, as discussed
below.

Work plan
Based on preliminary assessment of the effort required, we are requesting funding for three

graduate students and two undergraduate students. The two undergraduate students will be employed
for 10 hours/week each during the 30 weeks of the academic year, for a total of about 600 hours (900
hours in two years). The two undergraduate students will work on development of Perl scripts to
download and process data, on data management and on the survey Website. The graduate students
will devote 50% effort during the academic year and 100% effort during the summers, for a total of
3300 hours/year (6600 hours in two years). Two of the graduate students will support the principal
investigator in sample section, definition of constructs and variables, and will have primary respon-
sibility for data collection and analysis, under the oversight of the PI. The third graduate student will
be assigned to carry out a virtual ethnographic study of project teams. The principal investigator will
work one-third-time on the project during the summers, 1.0 months per year. Summers will be de-
voted to sample selection, interviews and publication of results. The PI will devote 10% of effort
during the academic year to project management and oversight (1/2 day / week, supported by Syra-
cuse University). A timeline of the project, including a break down of the work in to subphases, is
included as part of the budget justification.

These activities, in particular those related to the analysis of coordination practices and cognitive
models within the FLOSS development teams, will be carried out with the assistance of an interna-
tional collaborator, Dr. Barbara Scozzi of the Department of Mechanical and Business Engineering,
Polytechnic of Bari, Italy (please see the supporting documents section for a letter of support and
vitae; no funding is being requested from NSF to support Dr. Scozzi). Dr. Scozzi has collaborated
with the PI on a study of FLOSS project success factors [63] and her competencies in the analysis of
coordination practices within business processes [124, 125] and cognitive mapping [126, 127] will
be particularly valuable for this project.

4. Conclusion
In this proposal, we develop a conceptual framework and a research plan to investigate work

practices within distributed FLOSS development teams. We are particularly interested in coordina-
tion practices, social networks, and processes through which shared mental models are developed
within the teams, as these are considered as important success factors for software development.

Expected intellectual merits
The project will contribute to advancing knowledge and understanding of distributed teams by

identifying practices of effective FLOSS teams. The study has three main strengths. First, we fill a
gap in the literature with an in-depth investigation of the practices adopted by FLOSS teams, based
on a large pool of data and a strong conceptual framework. Second, we use several different tech-
niques to analyze the practices, providing different perspectives of analysis and a more reliable por-
trait of what happens in the development teams. Moreover, some of data analysis techniques, such as
cognitive maps, critical incident theory and social network theory have not yet been used with
FLOSS teams. Finally, we will attempt to assess the relationship between the practices and the
teams’ effectiveness, which again represents an innovative approach in the literature on FLOSS.

15

Expected broader impacts
The project has numerous broader impacts. The project will benefit society by identifying effec-

tive practices for FLOSS development, an increasingly important approach to software development.
The study will also shed light on effective practices for distributed work teams in general, which will
be valuable for managers who intend to implement such an organizational form. The effective prac-
tices can serve as guidelines (in team governance, task coordination, communication practices,
mentoring, etc.) to improve performance and foster innovation. Understanding these questions is im-
portant because a digital society entails an increased use of distributed teams for a wide range of
knowledge work. Distributed work teams potentially provide several benefits but the separation be-
tween members of distributed teams creates difficulties in coordination, collaboration and learning,
which may ultimately result in a failure of the team to be effective [37, 38, 128, 129]. For the poten-
tial of distributed teams to be fully realized, research is needed on the practices of effective teams.
As well, findings from the study can be used to enhance the way CMC technologies are used in edu-
cation or for scientific collaboration. For example, the results could be used to improve how collabo-
rations are managed in e-learning courses and distance classes. Finally, understanding FLOSS
development teams may be important as they are potentially training grounds for future software de-
velopers. As Arent and Nørbjerg [130] note, in these teams, “developers collectively acquire and de-
velop new skills and experiences”. To ensure that our study has a significant impact, we plan to
broadly disseminate results through journal publications, conferences, workshops and on our Web
pages. These results could also potentially be incorporated into the curricula of the professional
masters degrees of the Syracuse University School of Information Studies, which are taught on-line
and thus involve distributed teams. In order to improve infrastructure for research, we also plan to
make our tools and raw data available to other researchers. The project will promote teaching, train-
ing, and learning by including graduate and undergraduate students in the research project. These
students will have the opportunity to develop skills in data collection and analysis.

As well, the project has an important international component with the participation of Dr.
Scozzi of Politecnico di Bari, Italy, and her students. Syracuse University has hosted several visitors
from the Politecnico di Bari in the past, and with the support of this grant, we plan to have our stu-
dents spend time working with Dr. Scozzi in Bari. Such international exchanges and collaborations
are a tremendous vehicle for expanding the perspectives, knowledge and skills of both teams of sci-
entists. They offer a globalization of research and career opportunities, which contributes to the pro-
fessional and personal development of the students. These exchanges equip students to understand
and integrate scientific, technical, social, and ethical issues to confront the challenging problems of
the future.

Results from prior NSF funding
Kevin Crowston has been funded by three NSF grants within the past 48 months. The most re-

cent is IIS–0341475, SGER: Effective work practices for Open Source software development
($12,052, 1 September 2003 to 31 August 2004). This small grant has provided support for travel to
conferences (e.g., ApacheCon) to observe, interview and seek support from developers and to pre-
sent preliminary results, and for the purchase of data analysis software, supporting the initial results
reported in this proposal. This work has resulted in an accepted conference paper [85], with addi-
tional papers in preparation [e.g., 97].

Earlier support came from IIS–9732799 ($69,997, September 1, 1998 to February 29, 2000) and
IIS–0000178 ($269,967, July 1, 2000 to June 30, 2003), both entitled Towards Friction-Free Work:
A Multi-Method Study of the Use of Information Technology in the Real Estate Industry. The goal of
that study was to examine how the pervasive use of information and communication technologies
(ICT) in the real-estate industry changes the way people and organizations in that industry work.
Initial fieldwork resulted in several journal articles [131-133] and numerous conference presenta-
tions [e.g., 134, 135]. We are now analyzing the results of a survey administered in spring 2003.

The core of the PI’s research agenda concerns novel organizational forms enabled by new uses
of ICT. The present proposal builds on his interest in coordination processes and virtual organiza-
tions by studying a novel setting, namely open source software development teams.

16

References cited
[1] J. R. Hackman, "The design of work teams," in The Handbook of Organizational Behavior,

J. W. Lorsch, Ed. Englewood Cliffs, NJ: Prentice-Hall, 1986, pp. 315–342.
[2] K. Crowston and E. Kammerer, "Coordination and collective mind in software requirements

development," IBM Systems Journal, vol. 37, pp. 227–245, 1998.
[3] T. W. Malone and K. Crowston, "The interdisciplinary study of coordination," Computing

Surveys, vol. 26, pp. 87–119, 1994.
[4] K. E. Weick and K. Roberts, "Collective mind in organizations: Heedful interrelating on

flight decks," Administrative Science Quarterly, vol. 38, pp. 357–381, 1993.
[5] K. M. Eisenhardt, "Building theory from case study research," Academy of Management Re-

view, vol. 14, pp. 532–550, 1989.
[6] I. Stamelos, L. Angelis, A. Oikonomou, and G. L. Bleris, "Code quality analysis in open

source software development," Information Systems Journal, vol. 12, pp. 43–60, 2002.
[7] E. S. Raymond, "The cathedral and the bazaar," First Monday, vol. 3, 1998.
[8] P. Wayner, Free For All. New York: HarperCollins, 2000.
[9] J. D. Herbsleb and R. E. Grinter, "Splitting the Organization and Integrating the Code:

Conway’s Law Revisited," in Proceedings of the International Conference on Software En-
gineering (ICSE ‘99). Los Angeles, CA: ACM, 1999, pp. 85–95.

[10] K. Alho and R. Sulonen, "Supporting virtual software projects on the Web," presented at
Workshop on Coordinating Distributed Software Development Projects, 7th International
Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE
’98), 1998.

[11] W. Scacchi, "Understanding the Requirements for Developing Open Source Software Sys-
tems," IEE Proceedings Software, vol. 149, pp. 24–39, 2002.

[12] R. A. Ghosh, "Free/Libre and Open Source Software: Survey and Study. Report of the
FLOSS Workshop on Advancing the Research Agenda on Free / Open Source Software,"
European Commission, http://www.infonomics.nl/FLOSS/report/workshopreport.htm, 2002.

[13] M. O'Leary, W. J. Orlikowski, and J. Yates, "Distributed work over the centuries: Trust and
control in the Hudson's Bay Company, 1670–1826," in Distributed Work, P. Hinds and S.
Kiesler, Eds. Cambridge, MA: MIT Press, 2002, pp. 27–54.

[14] M. K. Ahuja, K. Carley, and D. F. Galletta, "Individual performance in distributed design
groups: An empirical study," presented at SIGCPR Conference, San Francisco, 1997.

[15] B. A. Nejmeh, "Internet: A strategic tool for the software enterprise," Communications of the
ACM, vol. 37, pp. 23–27, 1994.

[16] W. Scacchi, "The Software Infrastructure for a Distributed Software Factory," Software En-
gineering Journal, vol. 6, pp. 355–369, 1991.

[17] M. B. Watson-Manheim, K. M. Chudoba, and K. Crowston, "Discontinuities and continui-
ties: A new way to understand virtual work," Information, Technology and People, vol. 15,
pp. 191–209, 2002.

[18] P. C. van Fenema, "Coordination and control of globally distributed software projects,"
Erasmus University, Rotterdam, The Netherlands, Doctoral Dissertation 2002.

[19] P. S. de Souza, "Asynchronous Organizations for Multi-Algorithm Problems," Department of
Electrical and Computer Engineering, Carnegie-Mellon University, Doctoral Thesis 1993.

[20] D. J. Armstrong and P. Cole, "Managing distance and differences in geographically distrib-
uted work groups," in Distributed Work, P. Hinds and S. Kiesler, Eds. Cambridge, MA: MIT
Press, 2002, pp. 167–186.

17

[21] B. Curtis, D. Walz, and J. J. Elam, "Studying the Process of Software Design Teams," in
Proceedings, 1990, pp. 52–53.

[22] J. A. Espinosa, R. E. Kraut, J. F. Lerch, S. A. Slaughter, J. D. Herbsleb, and A. Mockus,
"Shared Mental Models And Coordination In Large-Scale, Distributed Software Develop-
ment," presented at Twenty-Second International Conference on Information Systems, New
Orleans, LA, 2001.

[23] D. Bandow, "Geographically Distributed Work Groups and IT: A Case Study of Working
Relationships and IS Professionals," in Proceedings of the SIGCPR Conference, 1997, pp.
87–92.

[24] G. Mark, "Conventions for coordinating electronic distributed work: A longitudinal study of
groupware use," in Distributed Work, P. Hinds and S. Kiesler, Eds. Cambridge, MA: MIT
Press, 2002, pp. 259–282.

[25] B. Curtis, H. Krasner, and N. Iscoe, "A field study of the software design process for large
systems," CACM, vol. 31, pp. 1268–1287, 1988.

[26] D. B. Walz, J. J. Elam, and B. Curtis, "Inside a software design team: knowledge acquisition,
sharing, and integration," Communications of the ACM, vol. 36, pp. 63–77, 1993.

[27] W. S. Humphrey, Introduction to team software process: Addison-Wesley, 2000.
[28] S. Sawyer and P. J. Guinan, "Software development: Processes and performance," IBM Sys-

tems Journal, vol. 37, pp. 552–568, 1998.
[29] F. P. Brooks, Jr., The Mythical Man-month: Essays on Software Engineering. Reading, MA:

Addison-Wesley, 1975.
[30] C. B. Seaman and V. R. Basili, "Communication and Organization in Software Develop-

ment: An Empirical Study," Institute for Advanced Computer Studies, University of Mary-
land, College Park, MD, USA 1997.

[31] R. J. Ocker and J. Fjermestad, "High Versus Low Performing Virtual Design Teams: A Pre-
liminary Analysis of Communication," in Proceedings of the 33rd Hawaii International
Conference on System Sciences, 2000, pp. 10 pages.

[32] A. Mockus, R. T. Fielding, and J. D. Herbsleb, "A Case Study of Open Source Software De-
velopment: The Apache Server," in Proceedings of ICSE’2000, 2000, pp. 11 pages.

[33] J. D. Herbsleb, A. Mockus, T. A. Finholt, and R. E. Grinter, "An Empirical Study of Global
Software Development: Distance and Speed," in Proceedings of the International Confer-
ence on Software Engineering (ICSE 2001). Toronto, Canada, 2001, pp. 81–90.

[34] B. Butler, L. Sproull, S. Kiesler, and R. Kraut, "Community Effort in Online Groups: Who
Does the Work and Why?," in Leadership at a Distance, S. Weisband and L. Atwater, Eds.,
In press.

[35] M. Grabowski and K. H. Roberts, "Risk mitigation in virtual organizations," Organization
Science, vol. 10, pp. 704–721, 1999.

[36] J. D. Herbsleb and R. E. Grinter, "Architectures, coordination, and distance: Conway's law
and beyond," IEEE Software, pp. 63–70, 1999.

[37] S. L. Jarvenpaa and D. E. Leidner, "Communication and trust in global virtual teams," Orga-
nization Science, vol. 10, pp. 791–815, 1999.

[38] R. E. Kraut, C. Steinfield, A. P. Chan, B. Butler, and A. Hoag, "Coordination and virtualiza-
tion: The role of electronic networks and personal relationships," Organization Science, vol.
10, pp. 722–740, 1999.

[39] S. Kiesler and J. Cummings, "What do we know about proximity and distance in work
groups? A legacy of research," in Distributed Work, P. Hinds and S. Kiesler, Eds. Cam-
bridge, MA: MIT Press, 2002, pp. 57–80.

18

[40] D. Robey, H. M. Khoo, and C. Powers, "Situated-learning in cross-functional virtual teams,"
IEEE Transactions on Professional Communication, pp. 51–66, 2000.

[41] W. J. Orlikowski, "Knowing in Practice: Enacting a Collective Capability in Distributed Or-
ganizing," Organization Science, vol. 13, pp. 249–273, 2002.

[42] C. Di Bona, S. Ockman, and M. Stone, "Open Sources: Voices from the Open Source Revo-
lution." Sebastopol, CA: O'Reilly & Associates, 1999.

[43] B. Kogut and A. Metiu, "Open-source software development and distributed innovation,"
Oxford Review of Economic Policy, vol. 17, pp. 248–264, 2001.

[44] J. Lerner and J. Tirole, "The open source movement: Key research questions," European
Economic Review, vol. 45, pp. 819–826, 2001.

[45] G. Hertel, S. Niedner, and S. Herrmann, "Motivation of Software Developers in Open Source
Projects: An Internet-based Survey of Contributors to the Linux Kernel," University of Kiel,
Kiel, Germany n.d.

[46] I.-H. Hann, J. Roberts, S. Slaughter, and R. Fielding, "Economic incentives for participating
in open source software projects," in Proceedings of the Twenty-Third International Confer-
ence on Information Systems, 2002, pp. 365–372.

[47] J. Bessen, "Open Source Software: Free Provision of Complex Public Goods," Research on
Innovation July 2002.

[48] E. Franck and C. Jungwirth, "Reconciling investors and donators: The governance structure
of open source," Lehrstuhl für Unternehmensführung und -politik, Universität Zürich,
Working Paper No. 8, June 2002.

[49] M. L. Markus, B. Manville, and E. C. Agres, "What makes a virtual organization work?,"
Sloan Management Review, vol. 42, pp. 13–26, 2000.

[50] J. Ljungberg, "Open Source Movements as a Model for Organizing," European Journal of
Information Systems, vol. 9, 2000.

[51] K. J. Stewart and T. Ammeter, "An exploratory study of factors influencing the level of vi-
tality and popularity of open source projects," in Proceedings of the Twenty-Third Interna-
tional Conference on Information Systems, 2002, pp. 853–857.

[52] N. Bezroukov, "Open source software development as a special type of academic research
(critique of vulgar raymondism)," First Monday, vol. 4, 1999.

[53] N. Bezroukov, "A second look at the Cathedral and the Bazaar," First Monday, vol. 4, 1999.
[54] M. J. Gallivan, "Striking a balance between trust and control in a virtual organization: A

content analysis of open source software case studies," Information Systems Journal, vol. 11,
pp. 277–304, 2001.

[55] J. Y. Moon and L. Sproull, "Essence of distributed work: The case of Linux kernel," First
Monday, vol. 5, 2000.

[56] A. Cox, "Cathedrals, Bazaars and the Town Council,"
http://sladhot.org/features/98/10/13/1423253.shtml, 1998.

[57] C. Gacek, T. Lawrie, and B. Arief, "The many meanings of Open Source," Centre for Soft-
ware Reliability, Department of Computing Science, University of Newcastle, Newcastle
upon Tyne, United Kingdom, Unpublished manuscript n.d.

[58] R. T. Fielding, "The Apache Group: A case study of Internet collaboration and virtual com-
munities," http://www.ics.uci.edu/fielding/talks/ssapache/overview.htm., 1997.

[59] F. Hecker, "Mozilla at one: A look back and ahead," http://www.mozilla.org/mozilla-at-
one.html, 1999.

[60] D. Cubranic and K. S. Booth, "Coordinating Open-Source Software Development," pre-
sented at Proceedings of the 7th IEEE Workshop on Enabling Technologies: Infrastructure

19

for Collaborative Enterprises, 1999.
[61] K. J. Stewart and S. Gosain, "Impacts of ideology, trust, and communication on effectivness

in open source software development teams," presented at Twenty-Second International Con-
ference on Information Systems, New Orleans, LA, 2001.

[62] V. Valloppillil, "Halloween I: Open Source Software,"
http://www.opensource.org/halloween/halloween1.html, 1998.

[63] K. Crowston and B. Scozzi, "Open source software projects as virtual organizations: Com-
petency rallying for software development," IEE Proceedings Software, vol. 149, pp. 3–17,
2002.

[64] G. C. Prasad, "A hard look at Linux’s claimed strengths…,"
http://www.osopinion.com/Opinions/GaneshCPrasad/GaneshCPrasad2-2.html, n.d.

[65] V. Valloppillil and J. Cohen, "Halloween II: Linux OS Competitive Analysis,"
http://www.opensource.org/halloween/halloween2.html, 1998.

[66] J. Hallen, A. Hammarqvist, F. Juhlin, and A. Chrigstrom, "Linux in the workplace," IEEE
Software, vol. 16, pp. 52–57, 1999.

[67] E. Leibovitch, "The business case for Linux," IEEE Software, vol. 16, pp. 40–44, 1999.
[68] B. Pfaff, "Society and open source: Why open source software is better for society than pro-

prietary closed source software," http://www.msu.edu/user/pfaffben/writings/anp/oss-is-
better.html, 1998.

[69] G. Moody, Rebel code—Inside Linux and the open source movement. Cambridge, MA:
Perseus Publishing, 2001.

[70] P. Vixie, "Software engineering," in Open sources: Voices from the open source revolution,
C. Di Bona, S. Ockman, and M. Stone, Eds. San Francisco: O’Reilly, 1999.

[71] R. E. Kraut and L. A. Streeter, "Coordination in software development," Communications of
the ACM, vol. 38, pp. 69–81, 1995.

[72] T. O’Reilly, "Lessons from open source software development," Communications of the
ACM, vol. 42, pp. 33–37, 1999.

[73] T. Shepard, M. Lamb, and D. Kelly, "More testing should be taught," Communication of the
ACM, vol. 44, pp. 103–108, 2001.

[74] G. K. Lee and R. E. Cole, "The Linux Kernel Development As A Model of Open Source
Knowledge Creation," Haas School of Business, University of California, Berkeley, Ber-
keley, CA, Unpublished manuscript December 2000 2000.

[75] R. L. Glass, "Of open source, Linux, …and hype," IEEE Software, vol. 16, pp. 126–128,
1999.

[76] A. Mockus, R. T. Fielding, and J. D. Herbsleb, "Two Case Studies Of Open Source Software
Development: Apache And Mozilla," ACM Transactions on Software Engineering and
Methodology, vol. 11, pp. 309–346, 2002.

[77] R. Young, "How Red Hat Software stumbled across a new economy model and helped im-
prove an industry," in Open sources: voices from the open source revolution, C. Di Bona, S.
Ockman, and M. Stone, Eds. San Francisco: O’Reilly, 1999.

[78] B. Behlendorf, "Open source as a business strategy," in Open sources: Voices from the open
source revolution, C. Di Bona, S. Ockman, and M. Stone, Eds. San Francisco: O’Reilly,
1999.

[79] D. Cubranic, "Open-source software development," presented at 2nd Workshop on Software
Engineering over the Internet, Los Angeles, 1999.

[80] R. A. Guzzo and M. W. Dickson, "Teams in organizations: Recent research on performance
effectiveness," Annual Review of Psychology, vol. 47, pp. 307–338, 1996.

20

[81] P. S. Goodman, E. C. Ravlin, and L. Argote, "Current thinking about groups: Setting the
stage for new ideas," in Designing Effective Work Groups, P. S. Goodman and Associates,
Eds. San Francisco, CA: Jossey-Bass, 1986, pp. 1–33.

[82] H. Kolodny and M. Kiggundu, "Towards the development of a sociotechnical systems model
in Woodlands Mechanical Harvesting," Human Relations, vol. 33, pp. 623–645, 1980.

[83] D. Gladstien, "Groups in context: A model of task group effectiveness," Administrative Sci-
ence Quarterly, vol. 29, pp. 499–517, 1984.

[84] V. F. Nieva, E. A. Fleshman, and A. Rieck, "Team Dimensions: Their Identity, Their Meas-
urement, and Their Relationships," Advanced Research Resources Organizations, Washing-
ton, DC, Final Technical Report for Contract No. DAHC19-78-C-0001 1978.

[85] K. Crowston, H. Annabi, and J. Howison, "Defining Open Source Software project success,"
in Proceedings of the 24th International Conference on Information Systems (ICIS 2003).
Seattle, WA, 2003.

[86] K. Kuwabara, "Linux: A bazaar at the edge of chaos," First Monday, vol. 5, 2000.
[87] R. M. Grant, "Prospering in dynamically-competitive environments: Organizational capabil-

ity as knowledge integration," Organizational Science, vol. 7, pp. 375–387, 1996.
[88] S. R. Schach, B. Jin, D. R. Wright, G. Z. Heller, and A. J. Offutt, "Maintainability of the

Linux Kernel," Department of Electrical Engineering and Computer Science, Vanderbilt
University, http://www.vuse.vanderbilt.edu/%7Esrs/preprints/linux.longitudinal.preprint.pdf,
2003, accessed 14 Dec 2003.

[89] S. Faraj and Y. Xiao, "Coordination in fast response organization," presented at Academy of
Management Conference, Denver, CO, 2002.

[90] J. A. Cannon-Bowers and E. Salas, "Reflections on Shared Cognition," Journal of Organiza-
tional Behavior, vol. 22, pp. 195–202, 2001.

[91] D. Dougherty, "Interpretive Barriers to Successful Product Innovation in Large Firms," Or-
ganization Science, vol. 3, pp. 179–202, 1992.

[92] J. P. Walsh, "Managerial and organizational cognition: Notes from a trip down memory
lane," Organization Science, vol. 6, pp. 280–321, 1995.

[93] J. S. Brown and P. Duguid, "Organizational learning and communities-of-practice: Toward a
unified view of working, learning, and innovation," Organization Science, vol. 2, pp. 40–57,
1991.

[94] K. Crowston, "A coordination theory approach to organizational process design," Organiza-
tion Science, vol. 8, pp. 157–175, 1997.

[95] S. R. Schach, B. Jin, G. Z. Heller, and A. J. Offutt, "Determining the Distribution of Mainte-
nance Categories: Survey versus Empirical Study,"
http://www.vuse.vanderbilt.edu/%7Esrs/preprints/lst.preprint.pdf, 2003, accessed 14 Dec
2003.

[96] D. Giorgetti and F. Sebastiani, "Automating survey coding by multiclass text categorization
techniques," Journal of the American Society for Information Science and Technology, vol.
54, pp. 1269-1277, 2003.

[97] K. Crowston and J. Howison, "The social structure of Open Source Software development
teams," presented at The IFIP 8.2 Working Group on Information Systems in Organizations
Organizations and Society in Information Systems (OASIS) 2003 Workshop, Seattle, WA,
2003.

[98] B. J. Dempsey, D. Weiss, P. Jones, and J. Greenberg, "Who is an Open Source Software de-
veloper?," Communications of the ACM, vol. 45, pp. 67–72, 2002.

[99] S. O’Mahony and F. Ferraro, "Managing the Boundary of an ‘Open’ Project," presented at
Santa Fe Institute (SFI) Workshop on The Network Construction of Markets, 2003.

21

[100] E. Webb and K. E. Weick, "Unobtrusive measures in organizational theory: A reminder,"
Administrative Science Quarterly, vol. 24, pp. 650–659, 1979.

[101] D. Cubranic, "The ramp-up challenge in open-source software projects," Department of
Computer Science, University of British Columbia, Vancouver, BC, Canada n.d.

[102] H. Gall, K. Hajek, and M. Jazayeri, "Detection of Logical Coupling Based on Product Re-
lease History," in Proceedings of the International Conference on Software Maintenance
(ICSM ’98), 1998.

[103] T. L. Graves, "Inferring Change Effort from Configuration Management Databases," 1998.
[104] I. Tuomi, "Evolution of the Linux Credits File: Methodological Challenges and Reference

Data for Open Source Research," Joint Research Centre, Institute for Prospective Techno-
logical Studies, http://www.jrc.es/~tuomiil/articles/EvolutionOfTheLinuxCreditsFile.pdf,
2002, accessed 15 November 2002.

[105] S. Koch and G. Schneider, "Effort, co-operation and co-ordination in an open source soft-
ware project: GNOME," Information Systems Journal, vol. 12, pp. 27–42, 2002.

[106] E. Chell, "Critical incident technique," in Qualitative methods and analysis in organizational
research: A practical guide, G. Symon, Ed. London: Sage, 1998, pp. 51–72.

[107] M. Mortensen and P. Hinds, "Fuzzy teams: Boundary disgreement in distributed and collo-
cated teams," in Distributed Work, P. Hinds and S. Kiesler, Eds. Cambridge, MA: MIT
Press, 2002, pp. 284–308.

[108] S. Weisband, "Maintaining awareness in distributed team collaboration: Implications for
leadership and performance," in Distributed Work, P. Hinds and S. Kiesler, Eds. Cambridge,
MA: MIT Press, 2002, pp. 311–333.

[109] B. A. Nardi and S. Whittaker, "The place of face-to-face communication in distributed
work," in Distributed Work, P. Hinds and S. Kiesler, Eds. Cambridge, MA: MIT Press, 2002,
pp. 83–110.

[110] K. Edwards, "Epistemic Communities, Situated Learning and Open Source Software Devel-
opment," presented at Epistemic Cultures and the Practice of Interdisciplinarity Workshop,
NTNU, Trondheim, 2001.

[111] M. B. Miles and A. M. Huberman, Qualitative Data Analysis : An Expanded Sourcebook,
2nd ed. Thousand Oaks: Sage Publications, 1994.

[112] R. Heckman and H. Annabi, "A Content Analytic Comparison of FTF and ALN Case-Study
Discussions," presented at 36th Annual Hawaii International Conference on System Sciences
(HICSS'03), Big Island, Hawaii, 2003.

[113] A. Edmondson, "Psychological Safety and Learning Behavior in Work Teams," Administra-
tive Science Quarterly, vol. 44, pp. 350-383, 1999.

[114] G. Baker-Brown, E. Ballard, S. Bluck, B. DeVries, P. Suedfeld, and P. Tetlock, "Coding
Manual for Conceptual/Integrative Complexity," University of British Columbia and Univer-
sity of California, Berkely 1990.

[115] G. Madey, V. Freeh, and R. Tynan, "The open source software development phenomenon:
An analysis based on social network theory," in Proceedings of the Eighth Americas Confer-
ence on Information Systems, 2002, pp. 1806–1815.

[116] A. H. van de Ven and M. S. Poole, "Methods for studying innovation development in the
Minnesota Innovations Research Program," Organization Science, vol. 1, pp. 313–335, 1990.

[117] Y. Yamauchi, M. Yokozawa, T. Shinohara, and T. Ishida, "Collaboration with lean media:
How open-source software succeeds," in Proceedings of CSCW’00. Philadelphia, PA, 2000,
pp. 329–338.

[118] A. Abbott, "A primer on sequence methods," Organization Science, vol. 1, pp. 375–392,
1990.

22

[119] K. Crowston and C. S. Osborn, "A coordination theory approach to process description and
redesign," in Organizing Business Knowledge: The MIT Process Handbook, T. W. Malone,
K. Crowston, and G. Herman, Eds. Cambridge, MA: MIT Press, 2003.

[120] K. M. Carley and M. Palmquist, "Extracting, representing and analyzing mental models,"
Social Forces, vol. 70, pp. 601–636, 1992.

[121] K. M. Carley, "Extracting team mental models through textual analysis," Journal of Organi-
zational Behaviour, vol. 18, pp. 533–558, 1997.

[122] K. Langfield-Smith, "Exploring the need for a shared cognitive map," Journal of manage-
ment studies, vol. 29, pp. 349-368, 1992.

[123] S. Nadkarni and F. F.-H. Nah, "Aggregated Causal Maps: An Approach To Elicit And Ag-
gregate The Knowledge Of Multiple Experts," Communications of the Association for Infor-
mation Systems, vol. 12, pp. 406–436, 2003.

[124] V. Albino, P. Pontrandolfo, and B. Scozzi, "Improving innovation projects by an informa-
tion-based methodology," International Journal of Automotive Technology and Manage-
ment, vol. 3, pp. 249–278, 2003.

[125] V. Albino, P. Pontrandolfo, and B. Scozzi, "Analysis of information flows to enhance the
coordination of production processes," International Journal of Production Economics, vol.
75, pp. 7–9, 2002.

[126] V. Albino, S. Kuhtz, and B. Scozzi, "Actors and cognitive maps on sustainable development
in industrial district," presented at Uddevalla Symposium, Uddevalla, Sweden, 2003.

[127] N. Carbonara and B. Scozzi, "Cognitive maps to analyze new product development proc-
esses: A case study," presented at 10th International Product Development Management
Conference, Brussels, Belgium, 2003.

[128] F. Bélanger and R. Collins, "Distributed Work Arrangements: A Research Framework," The
Information Society, vol. 14, pp. 137–152, 1998.

[129] E. Carmel and R. Agarwal, "Tactical approaches for alleviating distance in global software
development," IEEE Software, pp. 22–29, 2001.

[130] J. Arent and J. Nørbjerg, "Software Process Improvement as Organizational Knowledge
Creation: A Multiple Case Analysis," in Proceedings of the 33rd Hawaii International Con-
ference on System Sciences: IEEE Press, 2000, pp. 11 pages.

[131] K. Crowston and R. Wigand, "Real estate war in cyberspace: An emerging electronic mar-
ket?," International Journal of Electronic Markets, vol. 9, pp. 1–8, 1999.

[132] K. Crowston, S. Sawyer, and R. Wigand, "Investigating the interplay between structure and
technology in the real estate industry," Information, Technology and People, vol. 14, pp.
163–183, 2001.

[133] S. Sawyer, K. Crowston, R. Wigand, and M. Allbritton, "The social embeddedness of trans-
actions: Evidence from the residential real estate industry," The Information Society, vol. 19,
pp. 135–154, 2003.

[134] K. Crowston, S. Sawyer, and R. Wigand, "Investigating the interplay between structure and
technology in the real estate industry," presented at Organizational Communications and In-
formation Systems Division, Academy of Management Conference, Chicago, IL, 1999.

[135] K. Crowston and R. Wigand, "Use of the web for electronic commerce in real estate," pre-
sented at Association for Information Systems Americas Conference, Baltimore, MD, 1998.

Justification of level of effort

We have divided the two phases of the study into several subphases, as shown in the following
workplans.

Year 1 - workplan

Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun

4. Interviews

3. data analysis

2. data collection

1. sample selection

Phase II

3. data analysis

2. data collection

1. sample selection

Phase I

m
ai

n
 a

ct
iv

it
ie

s

Year 2 - workplan

Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun

5. NSF final documentation

4. publication preparation

3. developer survey

2. extended data
collection/analysis

1. sample selection

Phase III

5. publication preparation

4. Interviews, continued

m
ai

n
 a

ct
iv

it
ie

s

The principal investigator will work one-third-time on the project during the summers, 1 month per
year. Summers will be devoted to sample selection, interviews, final data analysis and publication of
results. The PI will devote 10% of effort during the academic year to project management and oversight
(1/2 day / week, supported by Syracuse University).

To carry out the project, the PI will involve three graduate students and two undergraduate students.
The two undergraduate students will be employed for 10 hours/week each during the 30 weeks of the
academic year, for a total of about 600 hours (1200 hours in two years). The two undergraduate students
will work on development of Perl scripts to download and process data, on data management and on the
survey Website.

The graduate students will each devote 50% effort during the academic year and 100% effort during
the summers, for a total of 3300 hours/year (6600 total hours in two years). Two of the graduate students
will support the principal investigator in sample section, definition of constructs and variables, and will

have primary responsibility for data collection and analysis, under the oversight of the PI. They will also
have immediate oversight of the work of the undergraduate students. The third graduate student will be
assigned to carry out a virtual ethnographic study of project teams. As some analysis will be done in
collaboration with Dr. Scozzi, the budget includes travel to Bari, Italy for the PI and graduate students.

1

Politecnico di Bari
DIPARTIMENTO DI INGEGNERIA MECCANICA E
GESTIONALE
VIALE JAPIGIA 182 - 70126 BARI (BA) - ITALIA
Direzione Tel. 080/5962702 - Amministrazione Tel. 080/5962752,
Fax 080/5962777
Sez. Progettazione: Tel. 080/5962700, Fax 080/5962.777 /741
Sez. Produzione: Tel. 080/5962756, Fax 080/5962788
Sez. Macchine ed Energetica: Tel. 080/5963 480, Fax 080/5963411

dr. Barbara Scozzi

22 December 2003
Kevin Crowston
Syracuse University School of Information Studies
4–206 Centre for Science and Technology
Syracuse, NY 13244–4100
USA

Dear Kevin:

I would like to be involved as a collaborator in your NSF project “Effective work
practices for distributed software development”. My participation would represent a
chance to advance my understandings of the work practices adopted in a computer-
mediated environment, while working in a very stimulating international context. I
believe that my contribution would also be extremely useful for the project
development.

I’m an Assistant Professor of Business and Management Engineering at the Polytechnic
of Bari (Italy). My research activity deals with the analysis of coordination and
knowledge management practices adopted in business organizations and, in particular,
on the role that information systems play to support such practices. Open Source
Software (OSS) development teams represent a perfect context where to study those
aspects. The teams exemplify a new and successful organizational form enabled by the
use of Information and Communication Technology. Investigating the work practices
adopted by such teams would provide relevant insights on some aspects, such as
coordination, learning and socialization, as they occur in a distributed work
environment and on the way they affect the work performance.

This project would be a good extension to our current research on OSS project’s
success factors, some results of which have already been published on an academic
journal (please refer to the attached biographical sketch). Our joint research activity
develops within a collaborative research agreement established between my department
(Department of Mechanics and Business Engineering - Polytechnic of Bari) and the
School of Information Studies (Syracuse University). The agreement is aimed at
promoting the development of joint research projects, fostering the exchange of
scientific knowledge and facilitating the mobility of professors and students. My

2

eventual involvement in the project would, thus, be part of a research program already
in progress, for which I’m going to present a proposal project to the European
Community and the Italian Minister of Instruction, University and Research.

My competencies in the study of coordination and knowledge management practices as
well as my interest in cognitive mapping could be particularly useful for the project
outcomes. In particular, I would like to contribute to the analysis of the coordination
modes adopted within the OSS team, starting from the bug fixing process. I could code,
abstract and analyze the data (downloaded from the project’s bug tracking systems)
related to accomplished tasks, dependencies among them, involved resources, the role
they have, and the coordination mechanisms they adopt. The presence of a different
view would foster discussion and improve the activity of data comparison and the
definition of constructs and variables suitable to characterize the adopted practices.
Moreover, this activity could be useful to provide inter-rater reliability in data coding.
As I’m also interested in studying the cognitive models adopted within OSS
development teams, I could interview (face-to-face and by email) the OSS developers
involved in some selected projects so as to develop their cognitive maps. The analysis
and comparison among the maps would be aimed at verifying the existence (or the lack
of) of a shared perspective about the adopted practices with a specific focus on learning
and socialization. Also I would investigate the relationship among the existence (or the
lack of) a collective mind and the work performance. Such research hypotheses have
been already reported in the section about the research design of the project.

I would participate to the project both in first person and through the work that some
students of the Politecnico of Bari, under my supervision and funded by the Politecnico
of Bari, could provide. The students could spend a period at the School of Information
Studies to work on the project. That would be an extremely formative experience for
them and a very useful support for the project development. This kind of experience has
been already experimented by some students of the Politecnico, mr. Giuseppe Sardone
(graduate student) and mr. Salvatore Buonocore (udergraduate student), that visited the
School of Information Studies (academic year 2002-2003) and worked on issues
related to Open Source Software.

Based on the above considerations, I again assert my vivid interest in taking part to the
project, as that participation would enhance my research activity and be valuable for the
project development.

Barbara Scozzi

