Towards A review of the empirical FLOSS literature

Kevin Crowston, James Howison, Kangning Wei, U. Yeliz Esereyl, Qing Li

Syracuse University

Method for review paper

- - Review of current research
 - ✓ What is known, where are the gaps?
 - Looked for papers in Web of Science, ABI/Inform, journal special issues, AOM and AIS conferences, IntOSS (IFIP) conferences, ICSE workshops, opensource.mit.edu
 - Restricted review to empirical papers on FLOSS development or use
 - ✓ Found more than 500 papers in 1st pass
 - ✓ Need to do a further pass to capture literature of past 18 months!

Literature Review Summary

- Mark Park
 - √ 586 articles reviewed
 - ✓ 295 Both Empirical and Relevant
 - Irrelevant excluded studies which simply used open source software for analysis or proof of concept
 - Tagged in hierarchical categories
 - Level of Analysis
 - Method
 - Projects studied
 - Data Type
 - Constructs
 - Discipline
 - ✓ Tried tagging for theory, but almost one per paper!

Analysis technique (Clustering)

Demo

Relevant and Empirical Articles Per Year

Clearly Truncated in early 2006!

More articles to collect

1997 is a Roy Fielding working paper

Papers by Method used

- 150 In-depth study of small number of projects
 - √ 102 Case-study
 - ✓ 21 Interviews (non-case study)
 - ✓ 21 Participant observation
 - √ 11 Ethnographies
 - 6 Discourse analysis
 - 70 Large scale sample measurement
 - 37 Surveys
 - ✓ 32 Other quantitative (eg correlation models)
 - ✓ 13 Review Article
 - 11 Not Specified/Unclear
 - ✓ 6 Action Research/Design Science
 - 4 Experiment

Other nuggets

- Top Projects Studied
 - ✓ 59 Linux
 - 32 Apache
 - 22 Mozilla
 - ✓ 13 Gnome
 - ✓ 10 Debian
 - Very long tail
- ✓ Very few longitudinal studies (~10)
 - Many others compounded data over lifetime but didn't study time-series or change
- About the same number studied for
 - ✓ Motivations, Coordination and Decision Making

Constructs

- and the
 - Schema reorganization is ongoing, show current version but unfortunately without exact counts
 - Inputs (~50%)
 - ✓ Process (~30%)
 - ✓ Outputs (~30%)
 - ✓ Some studies included all three (therefore > 100%)

Inputs

- Individuals
 - Characteristics
 - Motivations
 - Contributions (inc Time spent and Roles)
 - Companies
 - Characteristics, Motivations and Contributions
 - Teams
 - Project Characteristics (License etc)
 - Membership (Div of labor, distribution of effort)
 - Technology use
 - Interaction Structures (eg Onion Model)

Contribution: So much by so few....

Project Topics Sourceforge top 100 projects

Source: Sourceforge Weekly Download Stats, Week 1 2005.

With file sharing removed, the emphasis is tools that help technical tasks.

Source: Sourceforge Weekly Download Stats, Week 1 2005.

Developer numbers

67% never more than 1 developer, only 1.9% have had >10 developers

Processes (I)

- General Team Processes
 - Socialization
 - ✓ Governance (Group Decisions) and Leadership
 - Coordination
 - Team Maintenance
 - ✓ Knowledge Management

Process (II)

- Software Development Practices
 - Requirements
 - Planning and Design
 - Coding
 - ✓ Releases
 - Maintenance
 - Change cycle (bugs and features)
 - ✓ User support
 - Project Management

Public and Private Cycles in Development

Outputs

- Performance measures
 - ✓ System Quality (highest number)
 - Use (eg downloads)
 - User Satisfaction (few, using Freshmeat)
 - Impacts (Individual and Organizational)
 - ✓ Eg Learning or Revenue/Costs
 - Processes (eg bug-fixing speed)
 - Project member satisfaction
- Antecedents of performance
- Evolution
 - Of the software artifact
 - Of the team and its practices

Observations

- The state of the s
 - More work done than expected, more done since then!
 - Less bias towards motivations than expected
 - Substantial and cumulating body of work on software quality and other output measures
 - Need to develop a shared taxonomy of organizational types
 - Little longitudinal work, but it is very revealing, especially for taxonomy (Different paths to success and failure)

To Do

- Add recent literature
 - May do this during review, since one is always behind the curve
- Considering normalizing tags
 - ✓ So if study covers 5 topics in minimal depth, counts for less in an area than a paper in depth on single topic
- Considering tagging for contribution
 - Difficult to assess quality, will probably just do this in the text of the paper.
- Tags by year
 - Show the movement of research into different topics
- Finish text and finalize venue for submission
 - Considering MISQ Review and ACM Computing Surveys