

Decision-Making Processes and Team Performance in Self-Organizing

Virtual Teams: The Case of Free/Libre Open Source Software

Development Teams

Kangning Wei

School of Management
Shandong University

Jinan, Shandong, China
kwei@sdu.edu.cn

Kevin Crowston

School of Information Studies
Syracuse University

Syracuse, NY 13244, U.S.A
crowston@syr.edu

Robert Heckman

School of Information Studies
Syracuse University

Syracuse, NY 13244, U.S.A
rheckman@syr.edu

Qing Li

School of Information Studies
Syracuse University

Syracuse, NY 13244, U.S.A
 qli03@syr.edu

Acknowledgement: This work is partially funded by US National Science Foundation Human and
Social Dynamics Program Grant 05-27457.

mailto:kwei@sdu.edu.cn
mailto:rheckman@syr.edu
mailto:qli03@syr.edu

1

Decision-Making Processes and Team Performance in Self-Organizing Virtual Teams:

The Case of Free/Libre Open Source Software Development Teams

Abstract

Effective decision making is critical to team effectiveness. We examine decision making in the setting

of self-organizing virtual teams, a setting that we expect to pose particular problems for effective

decision making. A self-organizing team must develop effective practices in the absence of a formal

organizational structure that guides the practices. A virtual team’s reliance on technological support to

span temporal and organizational discontinuities makes an effective decision-making process more

difficult to achieve. We examine decision-making processes and their relation to team performance in

Free/Libre Open Source Software (FLOSS) teams, chosen as extreme examples of self-organizing

virtual teams. We identified six paths that describe the decision-making process. Further analysis

revealed that diversity in decision-making paths appeared to be related to differences in task types and

group performance. The study provides insight into decision making in FLOSS teams and has

implications for decision making in self-organizing virtual teams more generally .

Keywords: Decision making process, self-organizing; virtual team; team performance

1. Introduction

Decision making is an important component of team behavior (Guzzo and Salas 1995), and as such is

an important and extensively -studied topic in small group research (Kerr and Tindale 2004; Rousseau

et al. 2006). We examine decision-making processes within self-organizing virtual teams. By process,

we mean an interrelated sequence of events that occur over time leading to an organizational outcome

of interest (Robey et al. 2000), in this case, to a group decision. We define a group decision as one

that binds the team as a whole to a future course of action and on which the team reaches (perhaps

implicit) consensus (Kerr and Tindale 2004), in contrast to decisions that affect only the individual

making the decision. Much of the past work on small-group decision making has tended to focus on

linear, antecedent-consequence-type relations, which simplifies a complex set of processes (Kerr and

Tindale 2004). However, researchers have argued that it is not possible to simply relate inputs to

outputs while ignoring the process by which a group arrives at a decision (Guzzo and Salas 1995;

Poole and Baldwin 1996), motivating our focus on the process of decision making.

By virtual teams, we mean those whose members interact primarily or even exclusively via

information and communication technologies (ICT). Virtual teams are valuable to organizations

because of their ability to bridge discontinuities of time, geography, organization and culture,

enabling access to and transfer of knowledge across these boundaries (Duarte and Snyder 2001). They

have become increasingly common within and among organizations (Martins et al. 2004; Schiller and

Mandviwalla 2007) with the growth of inter-organizational alliances and advances in ICT. However,

virtual teams face many challenges to effectiveness, as the extensive use of ICTs changes the way

2

members interact and so how they make decisions (Kiesler and Sproull 1992). The lack of shared

context and numerous discontinuities faced by virtual team members can hamper decision making

(Watson-Manheim et al. 2002). For example, a lack of common language or agreement about role

structure may hinder member’s understandings of tasks and relationships, thus bringing conflicts

among group members and making it difficult to reach consensus (Armstrong and Cole 2002).

In this paper, we examine decision-making process in a particular type of virtual team, namely

self-organizing virtual teams. Self-organizing teams are teams that have discretion in deciding how to

carry out and allocate tasks within the team (Langfred 2004). We are interested in self-organizing

teams for two reasons. On the one hand, self-organization seems to be a common response to the

setting of virtual work. Taking advantage of the ability of the technology to span boundaries,

members of virtual teams may come from different geographically -dispersed units within a single

organization, or from entirely different organizations, and so have no leaders with formal authority

over all members. Even if there are appointed leaders, they may lack influence over team members

due to the organizational or physical separation. As a result, responsibility and decision making are

often delegated downward. For example, upper-level managers may set general strategic directions,

but leave day-to-day decisions about tasks and tactics to the team members. Indeed, some researchers

argue that to make virtual teams successful, it is important to provide team members with as much

autonomy as possible (Bourgault et al. 2008), which increases team’s flexibility to adapt to changing

situations (Manz and Sims 1987; Druskat and Wheeler 2003; Douglas et al. 2006). On the other hand,

self-organizing teams often face challenges brought by the absence of formal role structures that grant

authority . Previous studies link decision making in particular with leadership and authority (e.g.

Eisenhardt 1989; Srivastava et al. 2006; Boone and Hendriks 2009)). However, in self-organizing

teams, the role of managers moves towards facilitation instead of decision making, complicating

development of effective decision-making processes.

Despite the growing importance of self-organizing and virtual teams and the likely differences in

their decision-making practices, our brief review of the extensive research on group decision making

reveals relatively little research that has empirically investigated the processes of group decision

making in this setting. To address the limitations of prior research, we present a study of decision-

making processes in an extreme setting, a setting deliberately chosen to bring out the impacts of

virtual self-organizing on decision making, namely Free/Libre Open Source Software (FLOSS)

development teams. We addressed the following research questions in this research:

1. How are decision-making processes structured in FLOSS development teams?

2. How do contingency factors such as task type and task complexity affect the decision-making

processes adopted in FLOSS development teams?

3. How are decision-making processes related to team performance in FLOSS development

teams?

3

2. Literature Review

In this paper, we chose to examine decision making through an investigation of decision-making

processes. We made the choice of a process theory for two reasons. First, as noted above, the

phenomenon of decision making is complex, making it difficult to draw conclusions by looking only

at inputs and outputs. It is rather necessary to ―open up‖ the black box and examine the process by

which the decision was made. Furthermore, a significant problem in studying group decision making

is that it is a multi-level phenomenon involving not only individual participants but a group outcome.

A process theory provides a link because individuals carry out the various steps in the process, while

the process as a whole can have a group -level outcome (Crowston 2000).

Group decision making in particular has been analyzed using a process approach, viewing the

decision as structured interactively through communication (Poole and Baldwin 1996). As Hirokawa

(1992) pointed out, to understand decision-making dynamics, it is very important to examine

interaction patterns in group decision making: interaction is the essence of group decision making

(Poole and Baldwin 1996). Poole and Roth (1989) argued that a decision is not a discrete, independent

event but rather involves a series of activities and choices. In order to examine the nature of decision

development, it is necessary to generate descriptive data to understand how the group interaction

creates, elaborates and finalizes the decision over time.

2.1 Theories of Decision-Making Processes

A number of frameworks have been proposed to describe the phases of decision-making processes. A

phase is defined as ―a period of coherent activity that serves some decision-related function, such as

problem definition, orientation, solution development, or socio-emotional expression‖ (Poole and

Baldwin 1996, p. 216). Early studies proposed normative models to describe how decisions are made

in a unitary sequence of decision phases (Poole and Roth 1989). Many of these models stemmed from

Simon’s rational model of individual decision making (Simon 1965). According to Simon (1965),

after a decision opportunity is identified, three phases are involved in a decision: ―intelligence‖ (all

relevant information is collected), ―design‖ (all the possible alternatives are generated) and ―choice‖

(the final decision is made). Fisher (1970) proposed a model with four phases of decision making:

orientation, conflict, emergence and reinforcement. Though the two models propose different phases,

both assume that groups follow a systematic logic to reach decisions (Miller 2008). However, in a

study of decision development in small groups, Poole and Roth (1989) pointed out that the normative

models are not adequate to capture the nature of decision-making sequences. Simon (1976) himself

noted that decision makers do not always follow rational models.

An alternative to a normative sequential model is a non-phasic model, such as the garbage can

model, proposed by Cohen and his colleagues in a study of organizational anarchies (Cohen et al.

1972). This model proposes that decision making is a process wherein problems, solutions,

participants and choices dump together in a relatively independent fashion, and a decision is made

4

when elements from these four streams coincide under certain organizational structures. In this way,

the decision reached is not the result of logical search but merely a coincidence of problem and

solution with sustained attention (Miller 2008). Other researchers suggest that decision process are

best analyzed with continuous models (Seeger 1983; Cissna 1984). Although non-phasic models do

capture the fact that decisions are not always orderly, Poole and Roth (1989) argued that it is an over-

reaction to assume that there are no coherent periods of group work and the continuous approach

lacks compelling models to support it.

Acknowledging the fact that there may be more than one sequence of decision development and

the dynamic nature of decision making, Poole and his colleagues proposed another class of phase

models, multiple sequence models (Poole 1981; Poole 1983; Poole and Roth 1989; Poole and Roth

1989). These models argue that groups may follow different developmental sequences, depending on

contingency factors of the decision situation. Besides the sequence mentioned in the unitary sequence

models, groups may also follow ―more complicated paths in which phases repeat themselves and

groups cycle back to previously completed activities as they discover problems or encounter problems.

Also, possible are shorter, degenerate sequences containing only part of the complement of unitary

sequence phases‖ (Poole and Baldwin 1996, p . 217). Based on a study of 47 group decisions, Poole

and Roth (1989) discovered 11 different decision paths that fell into three main groups: unitary

sequences, complex sequences and solution-centered sequences. Similarly, by studying 25 strategic

decision processes, Mintzberg, et al (1976) suggested 7 different types of paths under a general three-

phase decision-making process. In general, comparing these three classes of decision-making

processes, multiple sequence models are advantageous because they not only capture the complexity

of the decision-making process, but also provide a systematic model to study the complexity (e.g.

Mintzberg et al. 1976; Poole and Roth 1989). Further, multiple sequence models provide normative

models additional strength to help practitioners adapt to changing demands (Poole 1983; Poole and

Baldwin 1996), which can be useful as it provides a framework for structuring analyses of decision

processes by providing terminology and a basis for comparison between diverse processes (Poole and

Baldwin 1996). We therefore adopted this approach in this paper.

Another important aspect to consider when investigating decision-making processes is the impact

of context on the process. As noted above, under different circumstances, groups might follow

different paths as they make decisions. Poole and Roth (1989) proposed a contingency model to

describe how team members structure their decision-making process subject to the contingency

factors of the decision situation. Two sets of contingency factors were found to be effective in

predicting decision paths and the complexity of the paths: task characteristics and group internal

structures that define work relationships in the group (i.e., cohesiveness, power concentration, conflict

history and size of the decision making group). For example, task complexity has been studied

extensively in decision-making literature (Payne 1976; Speier et al. 2003; Kamis et al. 2008), where it

has been shown as an important predicator of decision processes. According to Wood (Wood 1986),

5

task has three essential components: products, required acts and information cues. Based on the

relationships between required acts and information cues, task complexity has multiple dimensions in

terms of component complexity (i.e., the number of distinct acts and information cues required in the

performance of the task), coordinative complexity (i.e., the nature of relationships between acts,

information cues and products) and dynamic complexity (i.e., changes in the states of the world which

influences the coordinative complexity) (Wood 1986). Complex tasks require more acts and contain

more information cues than simple tasks, with these cues and acts are highly interdependent (Wood

1986). Therefore when processing complex tasks, decision makers need to employ different problem-

solving strategies to reach decisions (Payne 1976).

2.2 Technology-Use and Decision-Making Processes

A further factor affecting decision processes in our context is the use of ICT. There is considerable

evidence that ICT affects the group communication pattern, which reflects changes in the group

internal structures mentioned above. For example, Baltes et al. (2002) found that computer-mediated

group decision making achieved more equal participation since group members felt freer to express

their opinions. The use of ICT has provided both advantages and disadvantages for information

sharing in technology-supported groups. In particular, virtual teams can facilitate information sharing

by increasing the accessibility to diverse team members and their information (Sole and Applegate

2000; Majchrzak et al. 2005). On the other hand, a virtual team’s geographic, temporal, organizational

and cultural discontinuities (Watson-Manheim et al. 2002) may create problems that can hinder

information sharing among team members that are hard to overcome with ICT.

Most studies of technology and decision making have focused on the synchronous, text -based

decision-support system, such as GDSS (Sambamurthy and Chin 1994; Barkhi and Pirkul 2004). Even

though email has been used extensively for many years and remains one of the most frequently used

communication tool in organizations, less research has examined the impact of such asynchronous

technologies. By examining 25 years of the business communication and management literature,

Berry (2006) concluded that computer-mediated asynchronous communication systems such as email

enhance organizational communication and decision-making effectiveness because it increases team

member participation, offers flexibility over time and distance, creates additional time for reflection

and archives all discussions. However, these studies have primarily examined the advantages of using

asynchronous technologies instead of face-to-face communication, and their impact on decision

making outcomes, rather than examining effects on the decision-making process itself (Schmidt et al.

2001; Benbunan-Fich et al. 2002). Baltes et al. (2002) pointed out that few studies have examined

how email actually supports and influences group-decision processes (Olikowski and Yates (1994)

being one exception).

6

2.3 Decision-Making Process and Team Performance

Finally, we consider the link from team decision-making processes to team-performance outcomes.

The dominant paradigm in recent group decision making research is information processing

(Eisenhardt 1989; Kerr and Tindale 2004). This body of literature argues that team members are less-

than-optimal users of information, for example ignoring information that is not widely shared (Kerr

and Tindale 2004). The extent to which decision-making procedures involve adequate gathering and

analysis of relevant information (called procedural rationality) has been found to be associated with

decision effectiveness (Simon 1976). For example, Dean and Sharfman (1996) suggested a close link

between decision-making processes and decision effectiveness in their studies examining the

influence of procedural rationality and political behavior on decision success. They found that

decisions made after information collection and analysis are more effective than the others. Hirokawa

(1985) observed clear differences between successful and unsuccessful teams in terms of decision-

making phases. The successful teams tried to analyze a problem in depth before moving into a

solution-searching period, while the unsuccessful teams tended to skip this analy sis phase. Time in the

solution-development phase tended to peak in the middle period of the successful team, unlike in the

unsuccessful team. Poole and Holmes (1989; 1995) examined the relationship between decision path

and three outcome variables, consensus change, perceived decision quality and decision scheme

satisfaction, and showed that processes that most resembled logical normative sequences generate

better outcomes than the others.

In summary, the literature has proposed several sequence models for group decision making, which

provide a basis for comparing observed decision-making processes. A few studies examined the

detailed communications in groups and used these as a basis for identifying phases in the decision-

making process. These descriptions provide a starting point for our analyses. However, there are few

studies that examine the details of decision-making processes in self-organizing virtual contexts. The

current study is designed to address these gaps in the literature.

3. Setting: Free/Libre Open Source Software (FLOSS) Development Teams

To bring out the impacts of virtual self-organizing on decision-making processes, we chose to study

decision-making processes in an extreme setting, namely Free/Libre Open Source Software (FLOSS
1
)

development teams. FLOSS development teams are a good setting for our study for several reasons.

First, the projects are teams, as members have a shared goal of developing a product and a user

base to satisfy. Indeed, FLOSS development projects have attracted great interest among management

researchers because this mode of work provides a new model of innovation (von Krogh and von

Hippel 2006). Furthermore, teams have a shared social identity . Team members are interdependent in

1
 FLOSS is a broad term used to embrace software developed and released under a license allowing inspection,

modification and redistribution of the software’s source code. While there are important differences between

free software and open source software (Kelty 2008), their software development practices are largely similar,

hence our use of an umbrella term.

7

their tasks and core members know and acknowledge each other’s contributions. Second, the teams

are generally virtual, as developers contribute from around the world, meet face-to-face infrequently if

at all, and coordinate their activity primarily by means of ICT (Raymond 1998; Wayner 2000).

Discontinuities among team members make such emergence and indeed any kind of consistent

decision process seemingly harder to attain, yet effective teams seem to have developed productive

ways of making decisions. As well, in contrast to Group Decision-Supported Systems (GDSS),

FLOSS teams make most of decisions in an asynchronous fashion using email or message fora. Third,

many FLOSS teams are self-organizing, without formally appointed leaders or explicit indications of

rank or role, raising the question of how decision-making (and other) practices and authority emerge.

Previous research has found that self-assignment is the most common task assignment mechanism in

FLOSS teams (Crowston et al. 2007).

These features make FLOSS teams extreme examples of self-organizing virtual teams, which is

appropriate for our goal of understanding the implications of this mode of organization. But even

though they are extreme cases, they are not inconsistent with what many organizations are facing in

recruiting and motivating professionals and in developing distributed teams. As Peter Drucker put it,

―increasingly employees are going to be volunteers, because a knowledge worker has mobility and

can go pretty much every place, and knows it… Businesses will have to learn to treat knowledge

workers as volunteers‖ (Collins and Drucker 1999). Other researchers have treated FLOSS teams as a

template from which tomorrow’s organizational leader can learn. As Markus et al. (2000) argue ―there

is a relatively high degree of correspondence between the open-source movement and popular

depictions of the organization of the future and the virtual networked organization. Therefore, the

open-source movement provides some suggestions about how management must change in the years

ahead‖ (p. 25).

3.1 Contextual Factors Affecting FLOSS Decision-Making Processes

Given the important roles of contextual factors in the decision-making process, we next discuss

FLOSS team technology use, group internal structures and task characteristics (Poole and Roth 1989).

FLOSS development is usually organized in virtual teams supported by ICT. A variety of

asynchronous communications tools are used by participants to support their activities, including

decision making, such as project email lists, discussion fora, project websites, bug trackers and source

code repositories (Scacchi 2007). While they are available, many projects discourage the use of

synchronous media, such as chat or telephone, since such interactions do not provide useful records

for other participants to review. So-called ―forges‖, websites such as SourceForge, provide free access

to bundles of tools, facilitating project development. An important characteristic of FLOSS

development is its high modularity in software development which enables parallel development

(Rossi 2004). The use of source code repositories such as Concurrent Version System (CVS),

8

Subversion or Git facilitate simultaneous parallel development, providing a flexible working

environment that minimizes the level of interdependence and needed coordination among developers.

We consider the structure of FLOSS teams. In most teams, a small core group oversees the overall

design and contributes the bulk of the code. Other developers play an important role by contributing

bug fixes, new features or documentation, by providing support for new users and filling other roles in

the teams. Core group membership can bestow some rights, including the right to have input on group

decisions, such as what features should be integrated in the release of the software, when and how to

empower other code maintainers, or to ―pass the baton‖ to the next volunteer (Raymond 1999).

However, in comparison to traditional organizations, more people can share power and be involved in

group activities. In most projects, anyone with enough interests and skills can access the code,

contribute patches, make suggestions to the group and participate in important decisions.

Previous research has found that task type affects team interaction (Straus and McGrath 1994;

Mennecke et al. 2000; Fang et al. 2005-6). For our research, we classified the tasks in FLOSS

development into two broad categories: software-modification (SM) and non-software (NS) tasks. SM

decisions involved decisions about the primary work of the team, that is, software development,

including decisions such as bug fixes, additions of new features or product enhancements through a

change in software. These are defined as group decisions because the source code is a shared product

of the group and changes to the code thus affect all developers. NS decisions involved other group

decisions, such as strategic direction for the project, organizational and legal issues, or alliances and

partnerships. The SM task process is relatively well-structured as it is based on specific routines of

software development procedures, such as design and testing (Hauptman 1986). High modularity of

FLOSS source code minimizes the required coordination efforts among developers. In contrast, NS

tasks face more uncertainty and so need more discussion and participation from the developers. Hence,

we expected the decision patterns to be different between processing SM decision tasks and NS tasks.

Finally, we also examined task complexity through our choice of projects. In software

development, task complexity varies greatly depending on not only the characteristics of the software

task itself such as size and internal structure, but also on the coordination challenges imposed by

external factors such team structure (Espinosa et al. 2007). We expected that decisions about software

and projects with more external constraints, such as legal requirements, would be more complex

because development requires understanding of the constraints.

3.2 Decision-Making in FLOSS Teams

Though there are some studies that examine decision-making practices adopted by FLOSS teams,

very few of them have actually looked at the decision processes in detail. One common topic in

studies of FLOSS teams’ decision making is decision style, which depends on the hierarchy of the

developers. As Gacek and Arief (2004) pointed out, a stricter hierarchy differentiates between levels

of developers and generates a more centralized power structure, while a looser hierarchy treats

9

developers on a similar level and implies a decentralized decision-making process. So, different

projects might have different decision making styles. For example, in Linux, Linus Torvalds is

reported to have originally made most of the key decisions (Moon and Sproull 2000). Such a decision

style has been characterized as a ―benevolent dictatorship‖ (Raymond 1998). At the other extreme are

teams with a decentralized communications structure and more consultative decision-making style.

Some teams, such as the Apache httpd web-server project, are reported to try to reach ―rough‖

consensus in decisions (Fielding 1999). German (2003) described decentralized decision making in

the GNOME project. Committees and task forces composed of volunteers are created to complete

important tasks, flattening the organizational structure of the project and allowing broader

participation in the process. In addition, participation in decision making might change over the life of

the project. Fitzgerald (2006) suggested that a small group will control decision making early in the

life of a project, but as the project grows, more developers will get involved.

4. Data and Methods

Given the current state of the literature on decision-making processes in self-organizing virtual teams,

we adopted an exploratory approach to the research (Yin 2003). We studied six FLOSS project teams

to understand the decision-making process in FLOSS development. The following section describes

our project selection strategy, data collection and analysis method.

4.1 Project Selection

We sought to pick projects for our study that would provide a meaningful basis for comparison across

contextual features and that would illuminate the relationship between decision making and outcomes.

FLOSS projects are quite diverse, ranging from large widely-used systems such as the GNU/Linux

operating system and user app lications such as Firefox to more specifically focused applications such

as system development or management tools. To control unwanted systematic variance, we chose

projects that were roughly similar in age and in potential market size, and that were all at

production/stable development status. Projects at this stage have relatively developed membership and

sufficient team history to have established decision-making processes, yet the software code still has

room for improvement, which enables us to observe rich team interaction processes. Acknowledging

that the development tools used might structure decision making, we selected projects that were all

hosted on SourceForge, a popular FLOSS development site that provides a consistent mix of tools.

From our literature review, we concluded that a satisfactory explanation of the decision-making

processes of self-organizing virtual teams must take into account task characteristics and team

structural elements. To manipulate task complexity , we selected projects that developed two different

kinds of software applications: three projects that developed Enterprise Resource Planning (ERP)

systems (Compiere, WebERP and Apache OFBiz) and three that develop ed Instant Messenger (IM)

clients (Gaim, currently known as Pidgin, aMSN and Fire). Tasks in ERP projects were expected to be

10

more complex than those in IM projects since they have high software code interdependencies, and

many external constraints such as accounting rules and legal report ing requirements. ERP software

and IM clients also have different kinds of users, which again affects the nature of team interactions.

ERP software targets companies. Because these companies depend on the software for crucial

company operations, they are likely to dedicate developers or pay for consultants to work on the

project or provide resources in other ways, such as by purchasing a service contract. On the other

hand, the users of IM clients are individuals, whose involvement in the project is often less extensive

and motivated by personal interest.

The final factor is project performance. To address this factor, we picked projects with different

levels of performance. Project effectiveness is a multi-dimensional construct, including the project’s

outputs, team member satisfaction and continued project activities (Hackman and Morris 1978). We

therefore applied the multivariate approach to effectiveness in the FLOSS context suggested by

Crowston et al. (2006) aiming to discover a rank order of the projects within the IM and ERP

categories. Project outputs were measured by downloads and page views. Developer satisfaction was

measured through developer numbers and participation on the developer mailing lists. Since projects

within a single topic category are potential competitors, comparisons of outcomes such as downloads

between these projects are valid. For example, a user who needs an ERP system could potentially

choose any of the three, so it can be argued that the one with more users has been more effective in

meeting user demands. On the other hand comparing downloads of an ERP system to downloads of an

IM client says little about either’s effectiveness, since they have such different potential users.

The performances of the six projects were assessed using data collected by the FLOSSmole project

(Howison et al. 2006) from the project establishment in SourceForge until around March 2006. In

general, on three out of the four measures (downloads, page views and mail participants), Gaim

performed obviously better than aMSN, which in turn was slightly better than Fire. The three IM

projects had no big difference on the number of developers. As to ERP projects, Compiere also

performed obviously better than OFBiz and WebERP on three out of the four measures (developers,

downloads and page views). OFBiz performed slightly better than WebERP on these three measures.

There was no big difference in mailing list participants among these three projects. Since the small

number of cases ruled out statistical analyses at the project level, having a rough ordering of projects

in terms of effectiveness was felt to be sufficient. As a result, we identified Gaim and Compiere as the

more successful projects, while aMSN and Fire, OFBiz and WebERP were less successful projects. It

should be noted though that all of these projects were successful during the period studied, just at

varying levels. However, since the time of our study, Fire ceased development, while the others has

continued, though Gaim is now under a new name, Pidgin. In summary then, cases were selected to

control for topic, ICT tools, age and project status and to allow for comparison on task complexity and

level of success.

11

4.2 Data

To find evidence of group decision-making processes, we analyzed the email discourse on the

developers’ email lists or fora, which are the primary communication venue for the members of these

virtual teams. Data were obtained in May 2006 from the FLOSSmole project (http://flossmole.org/).

Though we cannot rule out the possibility of off-list discussions occurring through other channels

(e.g., IRC, IM, phone or face-to-face meeting), the projects used the email lists as the main

communication tool for development, meaning that such discussions would be invisible to numerous

developers as well as to us as researchers. Furthermore, our analy sis of the mailing list interactions

did not reveal references to such off-line discussions, suggesting that this data source provided a

complete view of the decision-making process, at least for the decisions made in this venue.

4.3 Unit of Analysis: Decision Episodes

We selected the decision episode as our primary unit of coding and analysis, defined as a sequence of

messages that begins with a triggering message (a ―decision trigger‖) presenting an opportunity for

choice (such as a feature request or a report of a software bug) and that includes discussion related to

the issue and possibly an announcement of the final decision (a ―decision announcement‖, either a

statement of the intention to do something or an actual implementation). These messages capture the

interactions among group members that constituted the process of making a particular decision.

Decision episodes were identified from the continuous stream of available messages through an

initial coding process (Annabi et al. 2008). We first read through the messages until we identified one

containing a decision trigger or announcement. Once we had a trigger or announcement message for a

decision, we identified the sequence of messages that embodied the group decision-making process

around the decision. Teams generally organize their discussions in a discussion thread, occasionally

initiating new threads with the same or similar subject line. Therefore, we developed an episode by

combining one or more discussion threads that included more than a single message, that used the

same or a similar subject line as in the initial message and that discussed the same main issue. The

process of identifying messages to include in an episode proceeded iteratively, as two researchers

collected messages, shared the process they used with the research team, and revised their process as a

result of feedback from the team. Since we were analyzing the messages retrospectively, we could

collect all of the messages related to the decision over time.

We then examined the collected messages to identify the message that included the final decision

announcement. In some cases, a decision announcement message was intermediate in an episode (i.e.,

more discussions might follow the decision announcement, possibly resulting in a revised decision

announcement). In those cases, we used the final decision announcement message for further analysis.

In other cases, we found no decision announcements in the messages responding to a trigger,

indicating that the group apparently did not reach a decision on the issue.

12

Coding for decision triggers, announcements and related messages was inductive, with three

independent analysts reading the messages to identify the codes. The inter-coder reliability reached

85% and 80% respectively on decision triggers and announcements. All differences between coders in

the process of identifying messages representing decision episodes were reconciled to obtain the

sample of episodes for analysis. The result of this initial coding process was a collection of episodes

(i.e., sets of related messages) from each project, each episode representing the group discussion that

addressed a particular decision.

4.4 Episode Sampling Procedure

To develop a comprehensive understanding of the projects’ decision-making processes, we sampled

20 decision episodes from three time periods in each project’s life. For each project, the beginning

and the ending periods are the first and last 20 decision episodes found as of May 2006 (i.e., from the

start of the project’s on-line presence to the most recent period). The middle period for each project

consisted of 20 episodes surrounding a major software release approximately halfway between the

beginning and ending periods. We chose to sample around a release period because making a release

is one of the key group decisions for a FLOSS project. Figure 1 shows the specific time periods

sampled for each project. Note that because projects changed their pace of development during the

study period, 20 decision episodes span different temporal durations in different projects and in

different periods. In particular, the Fire project ceased development shortly after our study and the

pace of decision making slowed towards the end of project, meaning that the 20 episodes sampled

covered a much longer time period for this project than for the others. In this paper, the 60 episodes

for each project are analyzed together.

Table 1 presents descriptive statistics for the episodes: the number of days spanned by the

messages in an episode (duration), number of messages included (length) and numbers of participants

in an episode (participants). In our sample, a decision episode took an average of four days to

conclude, included an average of six messages and attracted on average three members. However, as

Figure 1. Sampling Periods for Decision Episodes by Projects

13

suggested by the minimums and maximums, the distribution of duration, length and participation

counts are highly skewed. For example, while the average episode was completed in 4 to 5 days, some

took more than a month to reach the final decision. There were 45 (12.5%) decision episodes for

which we did not find a decision announcement.

Table 1. Descriptive Characteristics of Decision Episodes (N=360)

 Minimu

m

Maximu

m

Mea

n Std. Deviation

Duration (Number of days per episode) 1 48 4.42 7.050

Length (Number of message per episode) 1 49 6.34 6.027

Participation (Number of person per episode) 1 14 3.36 2.057

4.5 Data Analysis Procedure

In this section, we describe how we analyzed the decision process in the selected decision episodes.

We began analysis of decision episodes by identifying which were software-modification (SM) and

non-software (NS) decisions. Three independent analysts (members of the research team) first read

through the episodes to identify different types of decisions represented. Decision episodes about

software modification were identified as having the following triggers: 1) bug reports, 2) feature

requests, 3) problem reports, 4) patch submissions and 5) project to-do lists. Decision announcements

for software-modification related decision reflected either acceptance/rejection of the need for

software code modification or acceptance/rejection of a submitted code modification. Non-software

decision episodes were identified through the following triggers: 1) system design,

2) infrastructure/process, 3) business function, 4) release management and 5) other issues. Non-

software decision announcements reflected either acceptance or rejection of a proposed long-term

strategic plan for system design, infrastructure change and process improvement or resource

allocation including task assignment and time schedule. Among the 360 decision-making episodes,

we found 258 (71.7%) software-modification decision episodes and 102 (28.3%) non-software

decision episodes. The ERP projects had more non-software decision episodes (63, 35.0%) than did

the IM projects (39, 21.7%), which might reflect the greater complexity of these projects.

The main focus of our analysis was on the process of decision making, which we examined by

coding the steps in the decision-making process, adopting the ―functional move‖ as the primary unit

of coding. A functional move is ―the function or purpose served by a particular segment of the

conversational discourse‖ (Wittenbaum et al. 2004). The functional move has been used extensively

to understand the nature of interaction in both face-to-face and computer-mediated environments

(Poole et al. 1985; Poole and Holmes 1995; Herring 1996; Macoubrie 2003). However, few studies to

date have used functional move to analyze complex, asynchronous, text-based environments such as

email, electronic bulletin board or threaded discussion fora.

A decision-function coding scheme was developed both deductively and inductively. Deductively,

our coding scheme was based on the Decision Functions Coding System (DFCS) developed by Poole

14

and Roth (1989) and phases of decision making proposed by Mintzberg and his colleagues (1976).

DFCS segments the decision activities into four categories: 1) problem activity, including problem

analysis and problem critique; 2) executive activities, including orientation and process reflection;

3) solution activity, including solution analysis, design, elaboration, evaluation and confirmation; and

4) others, including tangents, simple agreement and simple disagreement. Mintzberg, et al.’s (1976)

proposed decision-making process included three central phases, identification, development and

selection with each phase containing one or more functional moves.

Inductively, we sought in the initial stages of content analysis to identify functional moves from

previous studies that were not used in the FLOSS context and so could be dropped, or novel moves

that had to be added. The coding system was revised through discussion among the authors. As a

result, we made the following changes to the coding scheme. First, we categorized functional moves

in FLOSS development into a normative decision making process that includes four phases:

identification, development, evaluation and announcement. Second, several frequently-used moves in

traditional decision-making contexts rarely occurred in our context, specifically ―screen‖ and

―authorization‖. In the FLOSS context, with distributed leadership, there was not a specific person in

charge of decision-making process who might screen issues as needing or not needing discussion.

Instead, discussions usually started immediately after an alternative was proposed. Similarly, a

decision generally did not need to be authorized by a certain person or institution. In the very few

cases, e.g., where the discussed issue needed to be handled by the administrator or the project leader,

the authorization move might have been activated, but due to its very low occurrences, we decided not

to include it in our coding scheme. Third, we divided the move ―Solution evaluation‖ into two types:

―Solution evaluation-opinion‖ and ―Solution evaluation-action‖. Unlike in synchronous interaction,

the asynchronicity of communication in FLOSS teams meant that group members could take some

time to test a proposed solution and post the results of their actions rather than simply posting

opinions. The final coding scheme is presented in Appendix 1. Three coders coded the moves in the

collected decision-making episodes by projects separately, then compared their results. Discrepancies

were discussed until the three coders agreed. The coding process took about one month.

Finally, we clustered episodes along two dimensions based on the sequences of moves represented

in the episodes. The first dimension is the level of procedural rationality reflected in the process, that

is, whether a group conducts information gathering and analysis activities in a way that matches the

normative models of decision making (what we called the sequences of decision phases). Specifically,

in our analysis, we examined how many of the theoretically-identified phases of decision making

were actually covered in the process of group decision-making in the episode. Second, we considered

whether the decision episodes progressed linearly through the phases (what we labeled as Type I

decision-making paths) or rather looped through phases repeatedly, as suggested by researchers such

as Mintzberg et al. (1976) (what we labeled as Type II decision-making paths).

15

5. Findings

We first describe the results of coding the decision moves in the episodes. We then examine the

relation between the decision patterns exhibited and the task and project performance.

5.1 Observed Decision-Making Paths

Following the procedure described in section 4.5, we identified six decision-making paths. The

dashed lines in the figures indicate points at which there might be one or more loops, leading to Type

II decision paths. The loop from decision announcement to problem identification indicates that an

intermediate decision was made before the decision was finalized.

Short-Cut. This path represents the simplest pattern, in which a decision

is made right after opportunity recognition, with no explicit diagnosis or

evaluation. Examples of this kind are often observed in the bug report or

problem solving discussions. For example, in one decision episode in the aMSN project, a user

reported a bug (Decision Recognition), which was quickly followed by the response of an

administrator that ―I just fixed it‖ (Decision Announcement), with no further discussion or evaluation.

While there is an absence of group input, these cases do represent a group decision, as the decision

made affects the shared group output. Furthermore, given the use of a shared discussion forum, the

absence of comments before or after the decision announcement can be read as implicit agreement

from the other team members rather than simple non-participation.

Implicit-Development (Implicit-D). In this path, the solution

development phase is skipped, which does not necessarily mean the non-

existence of development phase, but rather the invisibility of

development phase in the online discussions. In these episodes, the person who brings up an issue also

provides a solution. The subsequent discussions concentrate on evaluating its feasibility or the pros

and cons of implementation, rather than looking for more alternatives. For example, in the Compiere

project, a user initiated a discussion by posting two alternatives to address an identified problem:

―One layout suggestion would be to place the Menu Tree on the left of a main Backing Window. Then

windows invoked from the Menu Tree would appear on the right of the Backing Window. Or as an

alternative, convert the Menu Tree into a second level menu bar, or even merge it with the main menu

bar‖ (Decision recognition, Solution design). Subsequent discussion focused on the evaluations of

these alternatives (Solution evaluation-opinion) and the final decision was made based on a revision

of original proposal (Decision announcement).

Implicit-Evaluation (Implicit-E). The third type of decision-making

path we called ―Implicit-Evaluation‖ , indicating a lack of online

evidence of evaluation discussion. In these episodes, a decision is

announced directly after the alternatives are generated. For example, in aMSN, an administrator

brought up a technical issue and proposed three solutions (Decision recognition, Solution design). The

I D E AI D E A

I D E AI D E A

I D E AI D E A

16

next message posted by another administrator did not continue exploring solutions, but asked,

―Remind me a bit what the problem is‖ (Diagnosis). Most of the subsequent messages concentrated

on whether the problem was one for the aMSN project or just a problem from its supporting software

such as a KDE problem (Diagnosis). After some discussion and testing, members confirmed it was

not a KDE problem, but an aMSN tray icon problem (Diagnosis). Then the group attention returned to

solution generation (Solution design) and the problem was fixed quickly after a little revision of the

existing solution alternatives (Decision announcement).

Normative . The fourth category, ―Normative decision-making path‖,

are those that adhere most closely to the rational approach described in

earlier studies. In these episodes, the group goes through all phases of decision-making in a linear

sequence. For example, in the Fire project, a user reported a build failure (Decision identification).

The administrator pointed out the problem immediately (Diagnosis) and provided a solut ion (Solution

design). The user did some testing and confirmed the usability (Solution evaluation-action). Then the

administrator promised to commit the code into CVS soon (Decision announcement).

Dynamic. The ―Dynamic Decision-making path‖ represents the most

complex decision-making process we observed. Many of these decision

episodes resemble the Garbage Can Model described in the literature.

People may report a number of problems in a single message. Multiple issues, regardless of relevance,

are discussed in parallel. New problems can be triggered by the discussion of existing problems, and

the discussion may leave the original problems unsolved and unattended by participants. Discussions

may loop back to any previous phase at any time, even after a decision is announced. As with the

normative path, the dynamic decision-making path goes through all four phases, but with loops back

at almost every phase. For example, in the Gaim project, a user reported a crash (Decision

recognition). Several users showed the same concern with possible solutions (Diagnosis, Solution

design). The discussion went on until an administrator announced the decision: ―I’ve checked in the

fix. Equivalent code is already in the later version of libyahoo2 (0.60) which we haven’t yet upgraded

to.‖ However, this announcement prompted the user to raise a strategic decision opportunity about

when to release a new build: ―Ok, I think a new build should go out soon, as this is happening to a lot

of my fire friends now (I sent them my build)‖ (New Trigger which leads to a new decision episode).

After three days, the administrator responded by posting test build and asking for extensive testing: ―It

seems this is a pretty serious problem, and I think the tree is in pretty good shape right now (I’m

living on TOT pretty much and haven’t had problems.) I’ve posted a test build of Fire 0.31.e on my

mac.com account if you want to take a look at it. My plan is to post this on SourceForge later tonight

or tomorrow‖ (Diagnosis, Decision announcement).

Interrupted. The final category we called ―Interrupted decision-making

path‖ since no decision was actually made at the point that we observed the

I D E AI D E A

I D E AI D E A

D I A E

17

decision process. Interruptions may occur in any phase of discussion and various reasons may account

for the failure to reach a decision. An interruption in the identification phase may be a disagreement

on whether there is a real problem or if there is a need to fix it. An interruption in the development

phase may result from differences among various technical approaches and concerns. An interruption

in the evaluation phase can be brought by the existence of multiple parties pursuing individual

interests. For example, in the Gaim project, an administrator suggested adding audio functionality to

the product (Decision recognition). Several core members challenged the availability of this

functionality (Diagnosis). The discussions revealed two different preferred solutions—releasing a

stable version with minor changes or releasing an unstable version with a major innovation (Solution

analysis). Both sides extensively examined the current solutions, took relevant consequences into

account and provided feasible suggestions (Solution design, Solution evaluation-opinion). However,

after 11 days no final decision was reached.

Table 2 and Figure 2 show the distribution of the six decision-making paths across the 360

decision episodes. From the table we can see that only 32% of decisions episodes analyzed went

through all four phases (the normative and dynamic paths) while 39% of the discussions reached a

decision while skipping one or two phases (no decision was reached in the remaining 13% of cases).

In 29% of the decision episodes, the group made a decision right after the problem was recognized

(short-cut path). While 24% of decisions were made without the evaluation phase (implicit evaluation

path), only 2% of the decisions were made without a visible development phase (implicit development

path). We also found that 45% of decisions were made in a linear sequence (type I decision path),

while the other 55% included one or more loops (type II decision path).

Table 2. Count of Observed Decision Paths for All Episodes

 Short-cut Implicit-D Implicit-E Normative Dynamic Interrupted Total

Type I 87 (24%) 4 (1%) 35 (10%) 11 (3%) 0 (0%) 25 (7%) 163 (45%)

Type II 19 (5%) 3 (1%) 53 (14%) 0 (0%) 103 (29%) 20 (6%) 197 (55%)

Total 106 (29%) 7 (2%) 88 (24%) 11 (3%) 103 (29%) 45 (13%) 360 (100%)

Type I

Type II
0

5

10

15

20

25

30

Short-cut
Implicit-D

Implicit-E
Normative/
Dynamic Interrupted

Figure 2. Distribution of Observed Decision Paths for All Episodes

%

18

5.2 Relations between Task Characteristics and Decision Paths

As noted above, task characteristics have been observed to influence the way people structure their

decision-making processes. We therefore analyzed the episodes to look for significant difference on

decision-making paths between software modification and non-software decision episodes, and

between IM and ERP projects.

Figure 3. Differences between Decision Episodes on Duration (a), Length (b) and Participation (c)

(Shaded background for boxplots indicate that the differences are statistically significant)

1

10

100
Days

Duration

z = –0.51
p = 0.612

z = –1.59
p = 0.113

z = –2.28
p* = 0.017

z = –2.30
p* = 0.022

(a)

1

10

100
No. of
Messages

Length

z=–2.56
p** = 0.010

z = –1.64
p = 0.102

z = –4.08
p*** = 0.000

z = –2.39
p* = 0.017

z = –0.97
p = 0.331

(b)

1

2

4

8

16

No.

Participation

z = –3.37;
p*** = 0.001

z = –2.55
p** = 0.011

z = –4.60
p*** = 0.000

z = –1.86
p = 0.062

z = –0.75
p = 0.453

z = –3.37
p*** = 0.001

z = –2.55
p** = 0.011

z = –4.60
p*** = 0.000

z = –1.86
p = 0.062

z = –0.75
p = 0.453

(c)

z = –1.73

p = 0.083

19

5.2.1 Software vs. non-software decisions

Because the data were not normally distributed, we used Mann-Whitney U tests to test the differences

between software modification and non-software decision episodes in duration, length, and the

number of participants per episode. The results, shown in the first column of Figure 3, indicated

significant differences between software (SM) and non-software (NS) decision episodes on length

(z = –2.56; p = 0.010) and the number of participants per episode (z = –3.37; p = 0.001) but not on

duration. The non-software episodes had more messages and attract more participants than software-

modification episodes. A χ
2
 test of the relation between decision-episode types (software vs. non-

software) and decision paths indicate that there are also significant differences in the decision paths

adopted for these different decision tasks (as shown in Table 3 and Figure 4). More non-software

decision episodes failed to reach a decision (21%) than did software-modification episodes (9%).

Meanwhile, more software-modification episodes (31%) had implicit evaluation activities than did

non-software modification episodes (9%). Finally, we found more cyclic decision paths in software

modification episodes (58%) than in non-software ones (42%). Because the decision episodes and

decision paths in the software modification episodes differ from those in non-software episodes, we

decided that we should not analyze them together when considering the relation of other factors to

decision-making paths.

Table 3. Distribution of Decision-Making Paths between SM and NS Decision Episodes

Sequence of Decision making Paths
Linear or Cyclic

decision paths
Total

Short-

cut
Implicit-D Implicit-E Normative Dynamic Interrupted Type I Type II

SM 72 (28%) 2 (1%) 79 (31%) 6 (2 %) 75 (29%) 24 (9%) 108 (42%) 150 (58%) 258 (100%)

NS 34 (33%) 5 (5%) 9 (9%) 5 (5%) 28 (28%) 21(21%) 55 (54%) 47 (46%) 102 (100%)

 106 (29%) 7 (2%) 88 (24%) 11(3%) 103 (29%) 45 (13%) 163 (45%) 197 (55%) 360 (100%)

 χ
2
 = 30.444, df = 5, p*** = 0.00 χ

2
 = 4.292, df = 1, p* = 0.038

SM

NS

0

10

20

30

40

50

60

Short-cut
Implicit-D

Implicit-E
Normative

Dynamic
Interrupted

Type I
 Type II

Figure 4. Distribution of Decision Paths across SM and NS Episodes

%

20

5.2.2 Relation between task complexity and decision paths

As we discussed earlier, we expected decisions for ERP projects to be more complex than those for

IM projects since we expected ERP projects to have higher software code interdependencies and

many external constraints such as accounting rules and legal reporting requirements. As a result, we

expected to see different patterns of decision making in the IM and ERP projects.

 Software-modification episodes.

We first analyzed software modification episodes. As shown in the second column of Figure 3, SM

episodes in IM projects and ERP projects differed only on participation (z = –2.55, p = 0.011): IM

projects attracted somewhat greater participation in SM decision making than did ERP projects.

However, contrary to our expectation, IM projects and ERP projects displayed similar patterns for

both sequences of decision paths and Type I/II decision paths : χ
2
 tests of the relationship between type

of project and decision paths (Table 4 and Figure 5) shows no relation (χ
2
 = 2.53, p = 0.772 for phases

of decision paths and χ
2
 = 0.263, p = 0.608 for Type I/II).

Table 4. Distribution of Decision-Making Paths between IM and ERP Projects for SM episodes

Sequence of Decision making Paths
Linear or Cyclic

decision paths
Total

Short-

cut
Implicit-D Implicit-E

Normativ

e

Dynami

c
Interrupted Type I Type II

IM 37 (26%) 1 (1%) 44 (31%) 5 (4%) 41 (29%) 13 (9%) 57 (40%) 84 (60%) 141(100%)

ERP 36 (31%) 1 (1%) 35 (30%) 1 (1%) 33 (28%) 11 (9%) 51 (44%) 66 (56%) 117(100%)

 73 (28%) 2 (1%) 79 (31%) 6 (2%) 74 (29%) 24 (9%) 108 (42%) 150 (58%) 258(100%)

 χ
2
 = 2.53, df = 5, p = 0.772 χ

2
 = 0.263, df = 1, p = 0.608

 Non-software episodes.

For non-software episodes, IM projects had more messages per episode (z = –4.08, p*** = 0.000)

and more participants than ERP projects (z = –4.60, p*** = 0.000) (Figure 3, column 3). Consistent

with our expectation, the distribution of decision paths in non-software decisions in IM projects was

IM

ERP

0

10

20

30

40

50

60

Short-cut
Implicit-D

Implicit-E
Normative

Dynamic
Interrupted

Type I
 Type II

Figure 5. Distribution of Decision Paths on SM Episodes between IM and ERP Projects

%

21

quite different from in ERP projects (see Table 5 and Figure 6). However, the differences were not

what might be expected. Decision episodes for IM projects had more dynamic paths (44% vs. 19%),

while ERP projects were more likely to use short-cut paths (38% vs. 23%). ERP projects had more

interrupted decision paths (27% vs. 10%). IM projects had more loops in non-software episodes than

did ERP projects (62% Type II vs. 37%) (see Table 5 and Figure 6).

Table 5. Distribution of Decision-Making Paths between IM and ERP Projects for NS Episodes

Sequence of Decision making Paths
Linear or Cyclic

decision paths
Total

Short-

cut
Implicit-D Implicit-E Normative Dynamic Interrupted Type I Type II

IM 9 (23%) 4 (10%) 2 (5%) 3 (8%) 17 (44%) 4 (10%) 15 (38%) 24 (62%) 39 (100%)

ERP 24 (38%) 1 (2%) 7 (11%) 2 (3%) 12 (19%) 17 (27%) 40 (63%) 23 (37%) 63 (100%)

 33 (32%) 5 (5%) 9 (9%) 5 (5%) 29 (28%) 21 (21%) 55 (54%) 47 (46%) 102 (100%)

 χ
2
 = 15.7, df = 5, p** = 0.008 χ

2
 = 6.07, df = 1, p* = 0.014

5.2.3 Relation between decision paths and project performance

Finally, we examined the relationship between the decision-making paths and project performance to

assess whether certain kinds of decision processes were associated with more effective projects. As

noted above in the sampling section, although our measure of effectiveness is quite limited, the six

FLOSS projects we studied can be roughly grouped based on overall performance: first, Gaim and

Compiere, and second, aMSN, OFbiz, Fire and WebERP.

 Software modification episodes.

Overall, decision episodes from the more successful teams had longer duration (z = –2.28, p* =

0.017), but shorter length (fewer messages) (z = –2.39, p* = 0.017), i.e., in more successful teams,

members attend to the decision making process over a longer time period, but do not initiate more

IM

ERP

0

10

20

30

40

50

60

70

Short-cut
Implicit-D

Implicit-E
Normative

Dynamic
Interrupted

Type I
 Type II

%

Figure 6. Distribution of Decision Paths on NS Episodes between IM and ERP Projects

22

messages around the issues (column 4 of Figure 3). Table 6 and Figure 7 present the data pertaining to

project performance and decision paths in software modification episodes. For the relationship

between team performance and phases of decision-making paths, projects in the most successful

group have more short-cut (32%) and interrupted decision paths (17%) than the other group (27% and

6% respectively), but they have fewer four-phase decision paths (23% vs. 34%). The less successful

projects have more implicit-evaluation decision paths (32%) than the more successful projects (28%).

A χ
2
 test also indicates a significant difference between these two groups (χ

2
 = 13.6, p* = 0.019) (see

Table 6). However, considering Type I vs. Type II decision paths, a χ
2
 test indicated that the

difference is not statistically significant (χ
2
 = 3.27, p = 0.070).

Table 6. Distribution of Decision-Making Paths across Performance Groups for SM Episodes

Sequence of Decision making Paths
Linear or Cyclic

decision paths
Total

Short-

cut
Implicit-D Implicit-E

Normativ

e

Dynami

c
Interrupted Type I Type II

1 26 (32%) 0 (0%) 23 (28%) 0 (0%) 19 (23%) 14 (17%) 41 (50%) 41 (50%) 82 (100%)

2 47 (27%) 2 (1%) 56 (32%) 6 (3%) 55 (31%) 10 (6%) 109 (62%) 67 (38%) 176 (100%)

 73 (28%) 2 (1%) 79 (31%) 6 (2%) 74 (29%) 24 (9%) 150 (58%) 108(42%) 258 (100%)

 χ
2
 = 13.6, df = 5, p* = 0.019 χ

2
 = 3.27, df = 1, p = 0.070

1: Group 1 includes the better performing projects (Gaim andCompiere)

2: Group 2 includes the less well performing projects (aMSN, Fire, OfBiz, and WebERP)

 Non-software episodes

For non-software decisions, we observed significant differences in duration between the two

groups, similar to the differences on software episodes. Overall, decision episodes from the more

successful teams had longer duration (z = –2.30, p* = 0.022), while length and participation were not

significantly different, i.e., in more successful teams, members spend more time attending the

decision making process, but they do not initiate more discussions around the issues. For non-

Group 1

Group 2

0

10

20

30

40

50

60

70

Short-cut
Implicit-D

Implicit-E
Normative

Dynamic
Interrupted

Type I
 Type II

Figure 7. Distribution of Decision-Making Paths across Performance Groups for SM Episodes

%

23

software decisions, we observed no significant difference in the distribution of decision-making paths

among the different projects, as shown in the fifth column of Figure 3.

Table 7. Distribution of Decision-Making Paths across Performance Groups for NS Episodes

Sequence of Decision making Paths
Linear or Cyclic

decision paths
Total

Short-

cut
Implicit-D Implicit-E

Normativ

e

Dynami

c
Interrupted Type I Type II

1 15 (40%) 1 (3%) 3 (8%) 2 (5%) 7 (18%) 10 (26%) 22 (58%) 16 (42%) 38 (100%)

2 18 (28%) 4 (6%) 6 (10%) 3 (5%) 22 (34%) 11 (17%) 33 (52%) 31 (48%) 64 (100%)

 33 (32%) 5 (5%) 9 (9%) 5 (5%) 29 (28%) 21 (21%) 55 (54%) 47 (46%) 102 (100%)

 χ
2
 = 4.76, df = 5, p = 0.466 χ

2
 = 0.39, df = 1, p = 0.535

6. Discussion

The goal of this study was to investigate decision-making processes in self-organizing virtual teams,

FLOSS development teams in particular. We found that decision making operates differently in this

setting than in settings previously studied. Specifically, previous studies (e.g., Poole and Holmes 1995)

found a positive relationship between a normative decision path and group effectiveness: groups

going through more information-processing phases in decision making performed better than those

that did not. This relationship did not hold in our context. The more successful projects did not use

normative paths more often than less successful projects, nor did they cover more phases. Instead,

decision making in these teams shows novel patterns that reflect the impact of self-organization and

ICT support for virtuality, as well as the nature of the tasks in FLOSS development teams.

Our findings show that decision-making patterns differ between software (SM) and non-software

(NS) decision episodes. In our setting, SM decisions represent the teams’ routine work that leads to

the shared work product, while NS episodes are often strategic changes for project rather than simple

changes to the code. We found that the NS episodes were more active and attracted more participants

Group 1

Group 2

0

10

20

30

40

50

60

Short-cut
Implicit-D

Implicit-E
Normative

Dynamic
Interrupted

Type I
 Type II

Figure 8. Distribution of Decision-Making Paths across Performance Groups for NS Episodes

%

24

than SM episodes, suggesting that NS decisions exhibit increased complexity and uncertainty,

needing a higher level of group participation and more time to discuss. The decision paths in these

two types of decision episodes are quite different too. More non-software episodes fail to reach

decisions (21% vs. 9%) while more software-modification episodes skipped the evaluation phase

(31%) than non-software episodes (9%). It appears that due to the uncertainty and ambiguity of NS

decisions, it is sometimes more difficult to reach consensus. Further, software modification episodes

had somewhat more loops (58%) than the non-software ones (46%). Because these differences seem

to reflect different work practices, we discuss the further findings for these decisions separately.

6.1 Software Decision Making

We begin with software modification decisions (SM). The importance of SM decisions for projects is

shown by our finding of significant difference between more successful and less successful projects in

decision making for SM episodes. Interestingly, we found no significant difference between IM and

ERP projects for the process of SM decisions, that is, our findings suggest that the FLOSS projects

studied have a similar process for making SM decisions, a process heavily influenced by the self-

organizing nature of the teams and their reliance on ICT to support virtuality.

As noted above, in FLOSS projects much of the software development is carried out by a small

core set of developers. Self-organization empowers core individuals to pick tasks and to implement

decisions on their own. In FLOSS in particular, qualified developers with commit rights can submit

changes directly into the code repository, without the need for explicit permission from others.

However, this freedom is tempered by the need to make decisions that will be accepted by the group.

In other words, decisions (at least software modification decisions) are made by individuals (who

write the code) but accepted on the group level (when code is committed to the shared repository).

Developers generally announce decisions so other developers know what is happening and can

comment if they see a need. However, 29% of the decisions were made without any explicit

discussion of solutions (i.e., 106 of 360 decisions were Short-Cut). Though we cannot completely rule

out unarchived offline discussion, it appears that in a virtual setting, explicit discussion of decision

options is often unnecessary, perhaps even distracting: projects in the most successful group have

somewhat higher proportion of short-cut decision paths, and fewer four-phase decision paths. We

suggest that the use of ICT that provides team members with visibility into the shared work products

substitutes for discussion. Using these tools, developers do not have to explain in detail what they

have done to others. If other developers are curious, they can examine the code themselves; if they

concur, they need say nothing. The result of this approach is that when examining the discussions

leading to decisions, the process of how the final choice was reached is often invisible. This finding is

consistent with other research on FLOSS development that finds that much FLOSS development work

does not require much explicit discussion (Krishnamurthy 2002; Howison 2009).

25

The balance between individual freedom and responsibility to the group is further reflected in the

other observed decision paths. FLOSS practitioners often maintain that everyone in the community

has a right to contribute to the project by providing solutions and submitting code. Activity in the

development phase contributes to the creativity and innovative capacity of a project. The evaluation

phase then serves as the phase of ―quality control,‖ which ensures that only contributions of good

quality consistent with the overall goal of the project are added to the application. However, given a

set of alternatives, it appears that a skilled developer can perform the evaluation phase individually,

selecting an appropriate alternative without group discussion. We found that only 2% of decision

episodes (a total of 7) followed ―Implicit-Development‖ decision-making path, while 24% (a total of

88) followed the ―Implicit-Evaluation‖ path, i.e., a fair number of decision episodes skipped an

explicit evaluation phase, but few included evaluation without a development phase. There is little

evidence of dissent from these decisions, which suggests that those with commit rights and who

choose to implement a solution have the expertise to do so. The lack of evaluation seems further to

reflect an action orientation in FLOSS development groups’ decision-making: that it is preferable to

try out a solution rather than spending a lot of time in detailed evaluation of possible options. This

approach is supported by the fact that is always possible to return to a previous stage of development

by reversing a contribution that turns out to be unsatisfactory.

A final implication of the reliance on asynchronous communication is that this mode of

communications allows developers time to work independently, to think about and test solutions

rather than immediately discussing them with others. As a result, developers can propose more fully

developed potential solutions for consideration by the group. This effect of the technology is seen in

the fact that SM episodes in more successful groups appeared to take more time, but with fewer

messages per episode, which suggests that in more successful teams, members took more time to

develop and evaluate options before discussing them.

Taken together, these features of decision making are consistent with Ramesh and Dennis’s

argument about a new type of organization for global virtual teams. In contrast to traditional virtual

team design, which strives to tightly couple team members through information rich media, the new

form strives to decouple team members through the use of well-defined process and semantically-rich

interaction media (Ramesh and Dennis 2002). While FLOSS development is an extreme case, we

expect to see similar impacts in other virtual settings. For example, co-workers may be able to

substitute examination of shared documents (e.g., with systems such as Google Documents) for

extensive discussion of their contents and direct contribution to the shared work for negotiation about

who will do what.

6.2 Non-Software Decisions

We next consider the implications for virtuality and self-organization for non-software decisions (NS).

Interestingly, we did not find differences between more and less successful teams on the decision-

26

making process for NS decisions. However, it is worth noting that the project performance measures

we adopted are all code-related, such as downloads and page views, which might not reflect

performance on these decisions. Contrariwise, for NS decisions, the nature of the project has an

impact. We expected ERP projects to be more complex than IM projects in terms of software code

interdependencies and external constraints such as accounting rules and legal reporting requirements.

This complexity may explain the finding that ERP projects have more NS decisions than do IM

projects and more interrupted decisions. ERP and IM software also have different kinds of users,

which also affects the nature of team interactions : ERP software targets companies while IM software

targets individual end users. We therefore expected that more expertise would be needed to participate

in ERP software development. These observations may explain why the IM projects were able to

attract more people to participate and initiate more discussions in the development. Furthermore, the

easier involvement of participants in decisions may lead to more proposed solutions and objections to

proposals, which can explain why IM project decisions have more dynamic paths than ERP projects.

On the other hand, the ERP projects had more short-cut paths (38% vs. 23%), perhaps reflecting a

greater level of expertise for the developers that are involved.

The self-organizing nature of the teams seems to result in open communication around decision

making, as no individual controls the discussions. The asynchronicity of communication also means

that members may not be synchronized in progressing through the phases of the decision-making

process. Developers may raise questions about others’ actions based on their knowledge, leading back

to previous phases of decision making, leading the high proportion of dynamic paths observed.

7. Conclusion

The primary goal of this study was to understand the decision-making process in FLOSS development

teams, as extreme examples of self-organizing virtual teams, and its relations to project performance.

A limitation of this study is the exclusion of other channels of group communication, such as Internet

Relay Chat (IRC), Instant Messaging, phone calls and so forth. Though the usages of these non-

archived tools are generally discouraged in FLOSS projects, they are adopted at various levels in

different projects. It is possible that some of the steps in the decision-process that we infrequently

observed were in fact carried out by a subgroup using such alternative channels. However, the use of

such channels would not change our main conclusion, namely that many decisions that bind the

project to a course of action are made without explicit involvement of the entire group in seemingly

important phases of the decision process.

The study makes several important contributions to the literature. First, our research increases the

understanding of the process of decision making by analyzing specific decision episodes in detail.

Although studies have examined aspects of decision making such as decision making styles, we are

not aware of any study that has examined decision-making process in terms of decision-making paths.

Yet, it is very important to open the black box of decision-making processes in order to understand

27

how decisions are made in teams and how decision-making process is structured differently across

projects. Such an in-depth examination of the microstructures of decision-making processes

compliments existing macro-level research on decision making (e.g. Raymond 1998; German 2003).

Another distinctive contribution of this study is to adopt functional move as unit of coding in

analyzing decision episodes. Few studies to date have used functional move to analyze complex,

asynchronous, text-based environments such as email or threaded forums. In the present study, email

transcripts were used as the data source to understand decision making. The length of a single email

varies from one sentence that may make only one functional move to a thousand words that crosses all

decision-related functions before reaching the collective decision. These challenges make it difficult

to equate a functional move with any naturally occurring grammatical segment such as sentence or

message. Thus functional moves in thematic units would be serve better as a phrase, a sentence, a

paragraph, or even a complete email message. Moreover, in this self-organizing context, individuals

may be involved in multiple issues at one time, posing challenges to tracing individual decisions.

A particular contribution of this study is a better understanding of the nature of decision-making

processes in FLOSS development. Our findings reinforce the idea that FLOSS teams are not all alike.

Our findings show that differences in contextual attributes such as software type and project type, as

exemplified by the comparison of IM and ERP projects, have an influence on the emergence of work

practices. Nevertheless, our results have practical implications for structuring decision-making

processes in FLOSS development teams. First, our results suggest that software-modification

decisions are quite different from non-software decisions. Therefore, FLOSS development teams

might want to adopt different strategies when making these two types of decisions. For software-

modification decisions, the modularity and specific ICT adopted by FLOSS projects greatly reduced

the need for explicit coordination and communication among multiple developers, allowing members

to perform tasks in an independent fashion. For non-software decisions, FLOSS development teams

might want to fully use the asynchronicity of ICT to encourage participation and discussion. Second,

our results also suggest that more successful teams appear to be more self-organized in terms of

having more short cut paths and less dynamic paths in software modification episodes. Therefore,

FLOSS teams may want to support such self-organizing behaviors, perhaps by purposeful modular

design of software.

Though FLOSS development teams were deliberately selected as an extreme case, many of our

findings can be applied to organizational self-organizing virtual teams more generally. Indeed,

Markus et al. (2000) argues that ―Although managers in industries other than software development

may prefer more traditional styles of management, they should remember that the world is changing

and workers are changing along with it. In a labor force of volunteers and virtual teams, the

motivational and self-governing patterns of the open source movement may well become essential to

business success.‖ (p.25). The results of this study offer several practical insights that can benefit

organizations in decision making in a distributed, self-organizing work environment. First, managers

28

should consider to establishing mechanisms that enable team members to coordinate through their

work. For example, modularity of work products enables team members to work independently, while

making their contributions visible through ICT tools. Second, more successful teams seemed to take

longer time to make decisions. Therefore, managers might want to establish processes that allow team

members to spend more time to reflect instead of responding immediately, e.g., by building

asynchronous communication channels.

In summary, the variables and relationships we have identified provide the foundation for deeper

exploration and potentially richer explanations of the relationships we have described. Future studies

should replicate and extend this analysis to additional self-organizing virtual teams, FLOSS and

otherwise, to examine the relationship between the unique features of this setting, decision-making

processes and team effectiveness in more detail.

Appendix 1. Coding System for Stages in the Decision-Making Process

Phase Functional Move Explanation Examples

Identifi-

cation

Decision
recognition
routine

This move mainly recognizes the opportunity
that may lead to a decision. In our context, we
focus on:1) whether the fix is needed; 2) the

patch is accepted.

problem analysis (Poole
and Roth 1989); decision
recognition (Mintzberg

et al. 1976)

Diagnosis This move focuses on understanding the
underlying reasons that cause problems or create
opportunities for decisions. It also includes
asking and providing background information,
such as installation environment, computer

configuration etc.

problem critique (Poole
and Roth 1989);
diagnosis (Mintzberg et

al. 1976)

Develop-
ment

Solution analysis This move describes the activities trying to
develop its solution in general terms, rather than
providing specific solution, such as group
rule/norm, criteria and general directions to
guide the solution.

solution analysis (Poole
and Roth 1989)

Solution search This move describes the activities trying to look
for ready-made solutions based on experiences
and existing resources, rather than designing

solution by themselves.

search (Mintzberg et al.
1976), solution search
(Poole and Roth 1989)

Solution design This move describes the activities designing and
providing specific solutions and suggestions by
themselves, or modifying the ready-
made/existing ones according to the new

context.

design (Mintzberg et al.
1976), solution
elaboration (Poole and

Roth 1989)

Evalua-
tion

Solution
evaluation-

opinion

This move explicit or implicitly comments on
potential alternatives, based on personal
experiences/ preferences, rather than real

testing/checking.

evaluation-choice
(Mintzberg et al. 1976);
solution evaluation

(Poole and Roth 1989)

Solution
evaluation-action

This move explicit or implicitly comments on
potential alternatives, based on actual
testing/checking. It also includes describing the
details how the alternatives are tested and what

results come out of that.

29

Solution
confirmation

This move describes the activity to ask for
confirmation or initiate voting.

solution confirmation
(Poole and Roth 1989)

Announ-
cement

Decision
announcement

This move announces the final decision on
group level.

References

Annabi, H., Crowston, K. and Heckman, R. (2008). Depicting what really matters: Using episodes to
study latent phenomenon. Proceedings of the International Conference on Information Systems
(ICIS 2008). Paris, France.

Armstrong, D. J. and Cole, P. (2002). Managing distance and differences in geographically distributed
work groups. Distributed Work. P. Hinds and S. Kiesler. Cambridge, MA, MIT Press: 167–186.

Baltes, B. B., Dickson, M. W., Sherman, M. P. and Bauer, C. C. (2002). "Computer-Mediated
Communication and Group Decision Making: A Meta-Analysis." Organizational Behavior and
Human Decision Processes 87(1): 156-179.

Barkhi, R. and Pirkul, H. (2004). "The Influence of Communication Mode and Incentive Structure on
GDSS Process and Outcomes." Decision Support Systems 37(2): 287-305.

Benbunan-Fich, R., Hiltz, S. R. and Turoff, M. (2002). "A comparative content analysis of face-to-
face vs. asynchronous group decision making." decision Support Systems 34: 457-469.

Berry, G. R. (2006). "Can Computer-Mediated Asynchronous Communication Improve Team
Processes and Decision Making? Learning From the Management Literature." Journal of Business
Communication 43(4): 344-366.

Boone, C. and Hendriks, W. (2009). "Top Management Team Diversity and Firm Performance:
Moderators of Functional-Background and Locus-of-Control Diversity." Management Science
55(2): 165-180.

Bourgault, M., Drouin, N. and Hamel, E. (2008). "Decision Making Within Distributed Project Teams:
An Exploration of Formalization and Autonomy as Determinants of Success." Project
Management Journal 39(Supplement): S97-S110.

Cissna, K. (1984). "Phases in Group Development: the Negative Evidence." Small Group Behavior 14:
3-32.

Cohen, M. D., March, J. G. and Olson, J. P. (1972). "A Garbage Can Model of Organizational
Choice." Administrative Science Quarterly 17(1): 1-25.

Collins, J. and Drucker, P. (1999). A Conversation between Jim Collins and Peter Drucker. Drucker
Foundation News. 7: 4–5.

Crowston, K. (2000). Processes as theory in information systems research. IFIP TC8 WG8.2
International Working Conference on the Social and Organizational Perspective on Research and
Practice in Information Technology, Arlborg, Denmark, Kluwer Academic.

Crowston, K., Howison, J. and Annabi, H. (2006). "Information systems success in Free and Open
Source Software development: Theory and measures." Software Process—Improvement and
Practice 11(2): 123–148.

Crowston, K., Li, Q., Wei, K., Eseryel, U. Y. and Howison, J. (2007). "Self-organization of teams for
free/libre open source software development." Information and Software Technology 49: 564-575.

Dean Jr, J. W. and Sharfman, M. P. (1996). Does decision process matter? A study of strategic
decision-making effectiveness, JSTOR. 39: 368-396.

Douglas, C., Martin, J. S. and Krapels, R. H. (2006). "Communication in the Transition to Self-
Directed Work Teams." Journal of Business Communication 43(4): 295-321.

Druskat, V. U. and Wheeler, J. V. (2003). "Managing From the Boundary: The Effective Leadership
of Self-Managing Work Teams." Academy of Management Journal 46(4): 435-457.

Duarte, D. L. and Snyder, N. T. (2001). Mastering virtual teams. San Francisco, Jossey-Bass.

30

Eisenhardt, K. M. (1989). "Making Fast Strategic Decisions in High-Velocity Environments."
Academy of Management Journal 32(3): 543-576.

Espinosa, J. A., Slaughter, S. A., Kraut, R. E. and Herbsleb, J. D. (2007). "Familiarity, Complexity,
and Team Performance in Geographically Distributed Software Development." Organization
Science 18(4): 613-630.

Fang, X., Chan, S., Brzezinski, J. and Xu, S. (2005-6). "Moderating Effects of Task Type on Wireless
Technology Acceptance." Journal of Management Information Systems 22(3): 123-157.

Fielding, R. T. (1999). "Shared leadership in the Apache project." Communications of the ACM 42(4):
42–43.

Fisher, B. A. (1970). "Decision Emergence: Phases in Group Decision-Making." Communication
Monographs 37(1): 53-66.

Fitzgerald, B. (2006). "The Transformation of Open Source Software." MIS Quarterly 30(3): 587-598.

Gacek, C. and Arief, B. (2004). "The many meanings of Open Source." IEEE Software 21(1): 34-40.

German, D. M. (2003). "The GNOME project: A case study of open source, global software
development." Software Process: Improvement and Practice 8(4): 201-215.

Guzzo, R. A. and Salas, E. (1995). Team Effectiveness and Decision Making in Organizations. San
Francisco, CA, Jossey-Bass.

Hackman, J. R. and Morris, C. G. (1978). Group tasks, group interaction process, and group
performance effectiveness: A review and proposed integration. Group Processes, volume 8 of
Advances in Experimental Social Psychology. L. Berkowitz. New York, Academic Press: 45–99.

Hauptman, O. (1986). "Influence of Task Type on the Relationship between Communication and
Performance: the Case of Software Development." R&D Management 16(2): 127-139.

Herring, S. C., Ed. (1996). Computer-Mediated Communication: Linguistic, Social, and Cross-
Cultural Perspectives. Philadelphia, John Benjamins.

Hirokawa, R. Y. (1985). "Discussion procedures and decision-making performance: A test of a
functional perspective." Human Communication Research 12(2): 203–224.

Hirokawa, R. Y. and Rost, K. M. (1992). "Effective Group Decision Making In Organizations: Field
Test of the Vigilant Interaction Theory." Management Communication Quarterly 5(3): 267.

Howison, J. (2009). Alone Together: A Socio-Technical Theory of Motivation, Coordination and
Collaboration Technologies in Organizing for Free and Open Source Software Development.
School of Information Studies. Syracuse, NY, Syracuse University. PhD.

Howison, J., Conklin, M. and Crowston, K. (2006). "FLOSSmole: A collaborative repository for
FLOSS research data and analyses." International Journal of Information Technology and Web
Engineering 1(3): 17–26.

Kamis, A., Koufaris, M. and Stern, T. (2008). "Using an Attribute-Based Decision Support System for
User-Customized Products Online: An Experimental Investigation." MIS Quarterly 32(1): 159-
177.

Kelty, C. M. (2008). Two Bits: the Cultural Significance of Free Software. Durham, NC, Duke
University Press.

Kerr, N. L. and Tindale, R. S. (2004). "Group Performance and Decision Making." Annual Review of
Psychology 55: 623-655.

Kiesler, S. and Sproull, L. (1992). "Group Decision Making and Communication Technology."
Organizational Behavior and Human Decision Processes 52: 96-123.

Krishnamurthy, S. (2002). "Cave or Community? An Empirical Examination of 100 Mature Open
Source Projects." First Monday 7(6).

Langfred, C. W. (2004). "Too Muuch of a Good Thing? Negative Effects of High Trust and
Individual Autonomy in Self-Managing Teams." Academy of Management Journal 47(3): 385-
399.

31

Macoubrie, J. (2003). "Logical Argument Structures in Decision-making." Argumentation 17(3): 291-
313.

Majchrzak, A., Malhotra, A. and John, R. (2005). "Perceived Individual Collaboration Know-How
Development Through Information Technology-Enabled Contextualization: Evidence from
Distributed Teams." Information Systems Research 16(1): 9-27.

Manz, C. C. and Sims, H. P. (1987). "Leading Workers to Lead Themselves: The External Leadership
of Self-Managing Work Teams." Administrative Science Quarterly 32(1): 106-129.

Markus, M. L., Manville, B. and Agres, E. C. (2000). "What makes a virtual organization work?"
Sloan Management Review 42(1): 13--26.

Martins, L. L., Gilson, L. L. and Maynard, M. T. (2004). "Virtual Teams: What do We Know and
Where do We Go from Here?" Journal of Management 30(6): 805-835.

Mennecke, B. E., Valacich, J. S. and Wheeler, B. C. (2000). "The Effects of Media and Task on User
Performance: A Test of the Task-Media Fit Hypothesis." Group Decision and Negotiation 9: 507-
529.

Miller, K. (2008). Organizational Communication: Approaches and Processes. Bonston, MA,
Wadsworth Cengage Learning.

Mintzberg, H., Raisinghani, D. and Theoret, A. (1976). "The Structure of "Unstructured" Decision
Process." Adminstrative Science Quarterly 21(2): 246-275.

Moon, J. Y. and Sproull, L. (2000). "Essence of distributed work: The case of the Linux kernel." First
Monday 5(11).

Orlikowski, W. J. and Yates, J. (1994). "Genre Repertoire: The Structuring of Communicative
Practices in ORganizations." Administrative Science Quarterly 39(4): 541-574.

Payne, J. W. (1976). "Task Complexity and Contingent Processing in Decision making: An
Information Search and Protocol Analysis." Organizational Behavior and Human Performance
16(2): 366-387.

Poole, M. S. (1981). "Decision development in small groups I: A comparison of two models."
Communication Monographs 48(1): 1-24.

Poole, M. S. (1983). "Decision development in small groups II: A study of multiple sequences in
decision making." Communication Monographs 50(3): 206-232.

Poole, M. S. and Baldwin, C. L. (1996). Developmental Processes in Group Decision Making.
Communication and Group Decision Making. R. Y. Hirokawa and M. S. Poole. Thousands Oaks,
CA, SAGE: 215-241.

Poole, M. S. and Holmes, M. E. (1995). "Decision development in computer-assisted group decision-
making." Human Communication Research 22(1): 90–127.

Poole, M. S. and Roth, J. (1989). "Decision development in small-groups 4. A typology of group
decision paths." Human Communication Research 15(3): 323–356.

Poole, M. S. and Roth, J. (1989). "Decision Development in Small Group IV: A typology of Group
Decision Paths." Human Communication Research 15(3): 323-356.

Poole, M. S. and Roth, J. (1989). "Decision Development in Small Groups V: Test of a Contingency
Model." Human Communication Research 15(4): 549-589.

Poole, M. S., Seibold, D. R. and McPhee, R. D. (1985). "Group decision-making as a structurational
process." Quarterly Journal of Speech 71(1): 74–102.

Ramesh, V. and Dennis, A. R. (2002). The Object-Oriented Team: Lessons for Virtual Teams from
Global Software Development. Proceedings of the 35th Hawaii International Conference on
System Sciences, Big Island, HI, U.S.A.

Raymond, E. S. (1998). "The cathedral and the bazaar." First Monday 3(3).

Raymond, E. S. (1998). "Homesteading the noosphere." First Monday 3(10).

Raymond, E. S. (1999). "Interview: Linux and open source success." IEEE Software 16(1): 85--89.

32

Robey, D., Khoo, H. M. and Powers, C. (2000). "Situated-learning in cross-functional virtual teams."
IEEE Transactions on Professional Communication(Feb/Mar): 51--66.

Rossi, M. A. (2004). Decoding the ``Free/Open Source (F/OSS) Software Puzzle'': A survey of
theoretical and empirical contributions. Working Paper. Available at
http://opensource.mit.edu/papers/rossi.pdf.

Rousseau, V., Aube, C. and Savoie, A. (2006). "Teamwork Behaviors: a Review and an Integration of
Frameworks." Small Group Research 37(5): 540-570.

Sambamurthy, V. and Chin, W. W. (1994). "The Effects of Group Attitudes Toward Alternative
GDSS Design on the Decision-Making Performance of Computer-Supported Groups." Decision
Sciences 25(2): 215-241.

Scacchi, W. (2007). Free and open source software development: Recent research results and methods.
Advances in Computers. M. Zelkowitz, Elsevier Press. 69: 243-295.

Schiller, S. Z. and Mandviwalla, M. (2007). "Virtual Team Research: An Analysis of Theory Use and
a Framework for Theory Appropriation." Small Group Research 38(1): 12-59.

Schmidt, J. B., Montoya-Weiss, M. M. and Massey, A. P. (2001). "New Product Development
Decision-Making Effectiveness: Comparing Individuals, Face-to-Face teams, and Virtual Teams."
Decision Sciences 32: 575-600.

Seeger, J. A. (1983). "No Innate Phases in Group Problem-solving." Academy of Management
Review 8: 683-689.

Simon, H. A. (1965). The Shape of Automation. New York, Harper and Row.

Simon, H. A. (1976). Administrative Behavior. New York, NY, Free Press.

Sole, D. and Applegate, L. (2000). Knowledge Sharing Practices and Technology Use Norms in
Dispersed Development Teams. International Conference in Information Systems, Brisbane,
Australia.

Speier, C., Vessey, I. and Valacich, J. S. (2003). "The Effects of Interruptions, Task Complexity, and
Information Presentation on Computer-Supported Decision-Making Performance." Decision
Sciences 34(4): 771-796.

Srivastava, A., Bartol, K. M. and Locke, E. A. (2006). "Empowering Leadership in Management
Teams: Effects on Knowledge sharing, Efficacy, and Performance." Academy of Management
Journal 49(6): 1239-1251.

Straus, S. G. and McGrath, J. E. (1994). "Does the Medium Matter? The Interaction of Task Types
and Technology on Group Performance and Member Reactions." Journal of Applied Psychology
79(1): 87-97.

von Krogh, G. and von Hippel, E. (2006). "The Promise of Research on Open Source Software."
Management Science 52(7): 975-983.

Watson-Manheim, M. B., Chudoba, K. M. and Crowston, K. (2002). "Discontinuities and Continuities:
a new way to understand virtual work." Information, Technology & People 15(3): 191-209.

Wayner, P. (2000). Free For All. New York, HarperCollins.

Wittenbaum, G. M., Hollingshead, A. B., Paulus, P. B., Hirokawa, R. Y., Ancona, D. G., Peterson, R.
S., Jehn, K. A. and Yoon, K. (2004). "The functional perspective as a lens for understanding
groups." Small Group Research 35(1): 17–43.

Wood, R. E. (1986). "Task Complexity: Definition of the Construct." Organizational Behavior and
Human Decision Processes 37: 60-82.

Yin, R. K. (2003). Case Study Research: Design and Methods. Thousand Oaks, CA, SAGE
Publications.

http://opensource.mit.edu/papers/rossi.pdf

