
Journal of Database Management, 19(2), 1-30, April-June 2008 1

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

AbstrAct

Free/libre open source software (FLOSS, e.g., Linux or Apache) is primarily developed by distributed
teams. Developers contribute from around the world and coordinate their activity almost exclusively by
means of email and bulletin boards, yet some how profit from the advantages and evade the challenges of
distributed software development. In this article we investigate the structure and the coordination practices
adopted by development teams during the bug-fixing process, which is considered one of main areas of
FLOSS project success. In particular, based on a codification of the messages recorded in the bug tracking
system of four projects, we identify the accomplished tasks, the adopted coordination mechanisms, and
the role undertaken by both the FLOSS development team and the FLOSS community. We conclude with
suggestions for further research.

Keywords: bug-fixing processes; coordination practices; free/libre open source software; software
development

INtrODUctION
In this article, we investigate the coordination
practices for software bug fixing in Free/Libre
open source software (FLOSS) development
teams. Key to our interest is that most FLOSS
software is developed by distributed teams, i.e.,
geographically dispersed groups of individuals
working together over time towards a common
goal (Ahuja et al., 1997, p. 165; Weisband,
2002). FLOSS developers contribute from

around the world, meet face to face infrequently,
if at all, and coordinate their activity primarily by
means of computer mediated communications
(Raymond, 1998; Wayner, 2000). As a result,
distributed teams employ processes that span
traditional boundaries of place and ownership.
Since such teams are increasingly commonly
used in a diversity of settings, it is important to
understand how team members can effectively
coordinate their work.

bug Fixing Practices within Free/
Libre Open source software

Development teams1

Kevin Crowston, Syracuse University, USA

Barbara Scozzi, Politecnico di Bari, Italy

2 Journal of Database Management, 19(2), 1-30, April-June 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

The research literature on distributed work
and on software development specifically em-
phasizes the difficulties of distributed software
development, but the case of FLOSS develop-
ment presents an intriguing counter-example,
at least in part: a number of projects have been
outstandingly successful. What is perhaps most
surprising is that FLOSS development teams
seem not to use many traditional coordination
mechanisms such as formal planning, system
level design, schedules and defined development
processes (Mockus et al., 2002, p. 310). As well,
many (though by no means all) programmers
contribute to projects as volunteers, without
working for a common organization and/or
being paid.

The contribution of this article is to docu-
ment the process of coordination in effective
FLOSS teams for a particularly important
process, namely bug fixing. These practices are
analyzed by adopting a process theory, i.e., we
investigate which tasks are accomplished, how
and by whom they are assigned, coordinated,
and performed. In particular, we selected four
FLOSS projects, inductively coded the steps
involved in fixing various bugs as recorded
in the projects’ bug tracking systems and ap-
plied coordination theory to identify tasks and
coordination mechanisms carried out within
the bug-fixing process.

Studying coordination of FLOSS pro-
cesses is important for several reasons. First,
FLOSS development is an important phenom-
enon deserving of study for itself. FLOSS is
an increasingly important commercial issue
involving all kind of software firms. Million
of users depend on systems such as Linux and
the Internet (heavily dependent on FLOSS
software tools) but as Scacchi notes “little is
known about how people in these communities
coordinate software development across differ-
ent settings, or about what software processes,
work practices, and organizational contexts are
necessary to their success” (Scacchi, 2002, p.
1; Scacchi, 2005). Understanding the reasons
that some projects are effective while others
are not is a further motivation for studying
the FLOSS development processes. Second,

studying how distributed software develop-
ers coordinate their efforts to ensure, at least
in some cases, high-performance outcomes
has both theoretical and managerial implica-
tions. It can help understanding coordination
practices adopted in social collectives that are
not governed, at least apparently, by a formal
organizational structure and are characterized
by many other discontinuities that is, lack of
coherence in some aspects of the work setting:
organization, function, membership, language,
culture, etc. (Watson-Manheim et al., 2002).
As to the managerial implications, distributed
teams of all sorts are increasingly used in many
organizations. The study could be useful to
managers that are considering the adoption of
this organizational form not only in the field of
software development.

The remainder of the article is organized as
follows. In Section 2 we discuss the theoretical
background of the study. In Section 3 we stress
the relevance of process theory so explaining
why we adopted such a theoretical approach.
We then describe coordination theory and use
it to describe the bug-fixing process as carried
out in traditional organizations. The research
methodology adopted to study the bug-fixing
process is described in Section 4. In Section 5
and 6 we describe and discuss the study’s results.
Finally, in Section 7 we draw some conclusions
and propose future research directions.

bAcKGrOUND
In this section we provide an overview of the lit-
erature on software development in distributed
environment and the FLOSS phenomenon.

Distributed software Development
Distributed teams offer numerous potential
benefits, such as the possibility to perform
different projects all over the world without
paying the costs associated with travel or
relocation, or ease of reconfiguring teams to
quickly respond to changing business needs
(DeSanctis & Jackson, 1994; Drucker, 1988) or
to exploit available competences and distributed
expertise (Grinter et al., 1999; Orlikowski,
2002). Distributed teams seem particularly

Journal of Database Management, 19(2), 1-30, April-June 2008 3

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

attractive for software development, because
software, as an information product, can be
easily transferred via the same systems used
to support the teams (Nejmeh, 1994; Scacchi,
1991). Furthermore, while many developed
countries face a shortage of talented software
developers, some developing countries have a
pool of skilled professionals available, at lower
cost (Metiu & Kogut, 2001, p. 4; Taylor, 1998).
As well, the need to have local developers in
each country for marketing and localization
have made distributed teams a business need for
many global software corporations (Herbsleb
& Grinter, 1999b, p. 85).

While distributed teams have many poten-
tial benefits, distributed workers face many real
challenges. The specific challenges vary from
team to team, as there is a great diversity in their
composition and in the setting of distributed
work. As mentioned, distributed work is charac-
terized by numerous discontinuities that gener-
ate difficulties for members in making sense of
the task and of communications from others,
or produce unintended information filtering (de
Souza, 1993). These interpretative difficulties
make it hard for team members to develop a
shared mental model of the developing project
(Curtis et al., 1990, p. 52). A lack of common
knowledge about the status, authority and com-
petencies of participants brought together for the
first time can be an obstacle to the creation of
a social structure and the development of team
norms (Bandow, 1997, p. 88) and conventions
(Weisband, 2002), thus frustrating the potential
benefits of increased flexibility.

Numerous studies have investigated social
aspects of software development teams (e.g.,
Curtis et al., 1988; Humphrey, 2000; Sawyer
& Guinan, 1998; Walz et al., 1993). These
studies conclude that large system development
requires knowledge from many domains, which
is thinly spread among different developers
(Curtis et al., 1988). As a result, large projects
require a high degree of knowledge integration
and the coordinated efforts of multiple devel-
opers (Brooks, 1975). However, coordination
is difficult to achieve as software projects are
non-routine, hard to decompose perfectly and

face requirements that are often changing and
conflicting, making development activities
uncertain.

Unfortunately, the problems of software
development seem to be exacerbated when
development teams work in a distributed envi-
ronment with a reduced possibility for informal
communication (Bélanger, 1998; Carmel &
Agarwal, 2001; Herbsleb & Grinter, 1999a)..

In response to the problems created by dis-
continuities, studies of distributed teams stress
the need for a significant amount of time spent
in “community building” (Butler et al., 2002).
In particular, members of distributed teams
need to learn how to communicate, interact and
socialize using CMC. Successful distributed
cross-functional teams share knowledge and
information and create new practices to meet the
task-oriented and social needs of the members
(Robey et al., 2000). Research has shown the
importance of formal and informal adopted
coordination mechanisms, information shar-
ing for coordination and communications, and
conflict management for project’s performance
and quality (Walz et al., 1993). However, the
processes of coordination suitable for distrib-
uted teams are still open topics for research
(e.g., Orlikowski, 2002).

the FLOss Phenomenon:
A Literature Overview
The growing literature on FLOSS has addressed
a variety of questions. Some researchers have
examined the implications of free software from
economic and policy perspectives (e.g., Di Bona
et al., 1999; Kogut & Metiu, 2001; Lerner &
Tirole, 2001) as well as social perspective (e.g.,
Bessen, 2002; Franck & Jungwirth, 2002; Hann
et al., 2002; Hertel et al., 2003; Markus et al.,
2000). Other studies examine factors for the
success of FLOSS projects (Hallen et al., 1999;
Leibovitch, 1999; Pfaff, 1998; Prasad, n.d.;
Valloppillil, 1998; Valloppillil & Cohen, 1998,
Crowston and Scozzi, 2003). Among them, an
open research question deals with the analysis
of how the contributions of multiple developers
can be brought into a single working product
(Herbsleb & Grinter, 1999b). To answer such

� Journal of Database Management, 19(2), 1-30, April-June 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

a question, a few authors have investigated the
processes of FLOSS development (e.g., Jensen
& Scacchi, 2005; Stewart & Ammeter, 2002).
The most well-known model developed to
describe FLOSS organization structure is the ba-
zaar metaphor proposed by Raymond (1998). As
in a bazaar, FLOSS developers autonomously
decide the schedule and contribution modes
for software development, making a central
coordination action superfluous. While still
popular, the bazaar metaphor has been broadly
criticized (e.g., Cubranic, 1999). According to
its detractors, the bazaar metaphor disregards
some aspects of the FLOSS development
process, such as the importance of the project
leader control, the existence of de-facto hierar-
chies, the danger of information overloads and
burnout, the possibility of conflicts that cause a
loss of interest in a project or forking, and the
only apparent openness of these communities
(Bezroukov, 1999a, 1999b).

Nevertheless, many features of the bazaar
model do seem to apply. First, many teams are
largely self-organizing, often without formally
appointed leaders or formal indications of rank
or role. Individual developers may play dif-
ferent roles in different projects or move from
role to role as their involvement with a project
changes. For example, a common route is
for an active user to become a co-developer
by contributing a bug fix or code for a new
feature, and for active and able co-developers
to be invited to become members of the core.
Second, coordination of project development
happens largely (though not exclusively) in a
distributed mode. Members of a few of the larg-
est and most well-established projects do have
the opportunity to meet face-to-face at confer-
ences (e.g., Apache developers at ApacheCon),
but such an opportunity is rare for most project
members. Third, non-member involvement
plays an important role in the success of the
teams. Non-core developers contribute bug
fixes, new features or documentation, provide
support for new users and fill a variety of other
roles in the teams. Furthermore, even though
the core group provides a form of leadership
for a project, they do not exercise hierarchical

control. A recent study documented that self-
assignment is a typical coordination mechanism
in FLOSS projects and direct assignment are
nearly non-existent (Crowston et al., 2005). In
comparison to traditional organizations then,
more people can share power and be involved in
FLOSS project activities. However, how these
diverse contributions can be harnessed to create
a coherent product is still an important question
for research. Our article addresses this question
by examining in detail a particular case, namely,
coordination of bug-fixing processes.

cONcEPtUAL DEVELOPMENt
In this section, we describe the theoretical per-
spectives we adopted to examine the coordina-
tion of bug fixing, namely, a process-oriented
perspective and the coordination theory. We
also introduce the topic of coordination and
discuss the literature on coordination in soft-
ware development and the (small) literature on
coordination in FLOSS teams.

Processes as theories
Most theories in organizational and information
system research are variance theories, compris-
ing constructs or variables and propositions
or hypotheses linking them. By adopting a
statistical approach, such theories predict the
levels of dependent or outcome variables from
the levels of independent or predictor variables,
where the predictors are seen as necessary and
sufficient for the outcomes. In other words,
the logical structure of such theories is that if
concept a implies concept b, then more of a
means more (or less) of b. For example, the
hypothesis that the adoption of ICT makes
organization more centralized, examined as a
variance theory, is that the level of organiza-
tion centralization increases with the number
of new ICTs adopted.

An alternative to a variance theory is
a process theory (Markus & Robey, 1988).
Rather than relating levels of variables, pro-
cess theories explain how outcomes of interest
develop through a sequence of events. In that
case, antecedents are considered as necessary
but not sufficient for the outcomes (Mohr,

Journal of Database Management, 19(2), 1-30, April-June 2008 �

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

1982). For example, a process model of ICT
and centralization might posit several steps
each of which must occur for the organization
to become centralized, such as development
and implementation of an ICT system and use
of the system to control decision premises and
program jobs, resulting in centralization of
decision making as an outcome (Pfeffer, 1978).
However, if any of the intervening steps does
not happen, a different outcome may occur.
For example, if the system is used to provide
information directly to lower-level workers, de-
cision making may become decentralized rather
centralized (Zuboff, 1988). Of course, theories
may contain some aspects of both variance and
process theories (e.g., a variance theory with
a set of contingencies), but for this discussion,
we describe the pure case. Typically, process
theories are of some transient process leading to
exceptional outcomes, e.g., events leading up to
an organizational change or to acceptance of a
system. However, we will focus instead on what
might be called “everyday” processes: those
performed regularly to create an organization’s
products or services. For example, Sabherwal
and Robey (1995) described and compared the
processes of information systems development
for 50 projects to develop five clusters of similar
processes.

Kaplan (1991, p. 593) states that process
theories can be “valuable aids in understanding
issues pertaining to designing and implementing
information systems, assessing their impacts,
and anticipating and managing the processes
of change associated with them”. The main
advantage of process theories is that they can
deal with more complex causal relationships
than variance theories. Also they embody a
fuller description of the steps by which inputs
and outputs are related, rather than noting the
relationship between the levels of input and
output variables. Specifically, representing a
process as a sequence of activities provides
insight into the linkage between individual work
and processes, since individuals perform the
various activities that comprise the process. As
individuals change what they do, they change
how they perform these activities and thus their

participation in the process. Conversely, process
changes demand different performances from
individuals. ICT use might simply make indi-
viduals more efficient or effective at the activi-
ties they have always performed. However, an
interesting class of impacts involves changing
which individuals perform which activities and
how activities are coordinated. Such an analysis
is the aim of this article.

coordination of Processes
In this subsection, we introduce the topic of
coordination and present the fundamentals of
coordination theory. Studying coordination
means analyzing how dependences that emerge
among the components of a system are man-
aged. That stands for any kind of system, e.g.,
social, economics, organic, information system.
Hence, the coordination of the components of
a system is a phenomenon with a universal rel-
evance (Boulding, 1956). The above definition
of coordination is consistent with the large body
of literature developed in the field of organiza-
tion theory (e.g., Galbraith, 1973; Lawrence &
Lorsch, 1967; Mintzberg, 1979; Pfeffer & Salan-
cik, 1978; Thompson, 1967) that emphasizes
the importance of interdependence.

For example, according to Thompson
(1967), organizational action consists of the
coordination of the interdependences and the
reduction of the costs associated to their manage-
ment. Two components/systems are said to be
interdependent if the action carried out by one
of them affect the other one’s output or perfor-
mance (McCann & Ferry, 1979; Mohr, 1971;
Victor & Blackburn, 1987). For space reason, it
is not possible to present all the contributions on
coordination in the literature, but because of its
relevance, we here briefly report on Thompson’s
seminal work. Thompson (1967) identified three
main kinds of interdependence, namely pooled,
sequential and reciprocal interdependence.
Pooled interdependence occurs among organi-
zation units that have the same goal but do not
directly collaborate to achieve it. Sequential
dependence emerges among serial systems. A
reciprocal dependence occurs when the output
of a system is the input for a second system and

� Journal of Database Management, 19(2), 1-30, April-June 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

vice versa. The three kinds of interdependence
require coordination mechanisms whose cost
increases going from the first to the last one. The
coordination by standardization, i.e., routine and
rules, is sufficient to manage pooled-dependant
systems. Coordination by plan implies the
definition of operational schemes and plans. It
can be used to manage pooled and sequential
dependences. Finally, coordination by mutual
adjustment is suitable for the management of
reciprocal dependences.

The interest devoted by scholars and prac-
titioners to the study of coordination problems
has recently increased due to the augmented
complexity of products, production processes
and to the rapid advancement in science and
technology. To address these issues scholars
have developed coordination theory, a sys-
temic approach to the study of coordination
(Malone & Crowston, 1994). Coordination
theory synthesizes the contributions proposed
in different disciplines to develop a systemic
approach to the study of coordination. Studies
on coordination have been developed based
on two level of analysis, a micro and a macro
level. In particular, most organization studies
adopt a macro perspective, so considering
dependencies emerging among organizational
units. Other studies adopt a micro perspective,
so considering dependencies emerging among
single activities/actors. Coordination theory
adopts the latter perspective and, in particu-
lar, focuses on the analysis of dependencies
among activities (rather that actors). Hence,
it is particularly useful to the description and
analysis of organizational processes, which can
be defined as a set of interdependent activities
aimed to the achievement of a goal (Crowston,
1997; Crowston & Osborn, 2003). In particular,
this approach has the advantage of making it
easier to model the effects of reassignments
of activities to different actors, which is com-
mon in process redesign efforts. We adopted
this perspective because the study focuses on
analyzing coordination mechanisms within
processes.

Consistent with the definition proposed
above, Malone and Crowston (1994) analyzed

group action in terms of actors performing in-
terdependent tasks. These tasks might require or
create resources of various types. For example,
in the case of software development, actors
include the customers and various employees
of the software company. Tasks include trans-
lating aspects of a customer’s problem into
system requirements and code, or bug reports
into bug fixes. Finally, resources include in-
formation about the customer’s problem and
analysts’ time and effort. In this view, actors
in organizations face coordination problems
arising from dependencies that constrain how
tasks can be performed.

It should be noted that in developing this
framework, Malone and Crowston (1994)
describe coordination mechanisms as relying
on other necessary group functions, such as
decision making, communications, and devel-
opment of shared understandings and collective
sensemaking (Britton et al., 2000; Crowston
& Kammerer, 1998). To develop a complete
model of a process would involve modeling all
of these aspects: coordination, decision making,
and communications. In this article though, we
will focus on the coordination aspects, bracket-
ing the other phenomenon.

Coordination theory classifies dependen-
cies as occurring between a task and a resource,
among multiple tasks and a resource, and among
a task and multiple resources. Dependencies
between a task and a resource are due to the fact
that a task uses or creates a resource. Shared
use of resources can in turn lead to dependen-
cies between the tasks that use or create the
resource. These dependencies come in three
kinds. First, the flow dependence resembles the
Thompson’s sequential dependency. Second,
the fit dependence occurs when two activities
collaborate in the creation of an output (though
in the case where the output is identical, this
might better be called synergy, since the benefit
is that duplicate work can be avoided). Finally,
the share dependency emerges among activities
that share the use of a resource. Dependencies
between a task and multiple resources are due
to the fact that a task uses, creates or produces
multiple resources or a task uses a resource

Journal of Database Management, 19(2), 1-30, April-June 2008 �

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

and create another resource. For example, in
the case of software development, a design
document might be created by a design task
and used by programming tasks, creating a fit
dependency, while two development tasks might
both require a programmer (a share dependency)
and create outputs that must work together (a
fit dependency).

The key point in this analysis is that de-
pendencies can create problems that require
additional work to manage (or provide the
opportunity to avoid duplicate work). To over-
come the coordination problems created by
dependences, actors must perform additional
work, which Malone and Crowston (1994)
called coordination mechanisms. For example,
if particular expertise is necessary to perform a
particular task (a task-actor dependency), then
an actor with that expertise must be identified
and the task assigned to him or her. There are
often several coordination mechanisms that can
be used to manage a dependency. For example,
mechanisms to manage the dependency between
an activity and an actor include (among others):
(1) having a manager pick a subordinate to
perform the task; (2) assigning the task to the
first available actor; and (3) having a labour
market in which actors bid on jobs. To man-
age a usability subdependency, the resource
might be tailored to the needs of the consumer
(meaning that the consumer has to provide that
information to the producer) or a producer might
follow a standard so the consumer knows what
to expect. Mechanisms may be useful in a wide
variety of organizational settings. Conversely,
organizations with similar goals achieved us-
ing more or less the same set of activities will
have to manage the same dependencies, but
may choose different coordination mechanisms,
thus resulting in different processes. Of course,
the mechanisms are themselves activities that
must be performed by some actors, and so
adding coordination mechanisms to a process
may create additional dependences that must
themselves be managed.

coordination in software
Development
Coordination has long been a key issue in
software development (e.g., Brooks, 1975;
Conway, 1968; Curtis et al., 1988; Faraj &
Sproull, 2000; Kraut & Streeter, 1995; Parnas,
1972). For example, Conway (1968) observed
that the structure of a software system mirrors
the structure of the organization that develops
it. Both Conway (1968) and Parnas (1972)
studied coordination as a crucial part of software
development. Curtis et al. (1988) found that in
large-scale software project, coordination and
communication are among the most crucial
and hard-to-manage problems. To address such
problems, software development researchers
have proposed different coordination mecha-
nisms such a planning, defining and following
a process, managing requirements and design
specifications, measuring process character-
istics, organizing regular meetings to track
progress, implementing workflow systems,
among the others.

Herbsleb and Grinter (1999b), in a study
of geographically-distributed software develop-
ment within a large firm, showed that some of
the previously mentioned coordination mecha-
nisms—namely integration plans, component-
interface specifications, software processes and
documentation—failed to support coordination
if not properly managed. The mechanisms
needed to be modified or augmented (allowing
for the filling in of details, handling exceptions,
coping with unforeseen events and recovering
from errors) to allow the work to proceed.
They also showed that the primary barriers
to coordination breakdowns were the lack of
unplanned contact, knowing whom to contact
about what, cost of initiating a contact, ability
to communicate effectively and lack of trust or
willingness to communicate openly.

Kraut and Streeter (1995), in studying the
coordination practices that influence the sharing
of information and success of software develop-
ment, identified the following coordination tech-
niques: formal-impersonal procedures (projects
documents and memos, project milestones and
delivery schedules, modification request and

8 Journal of Database Management, 19(2), 1-30, April-June 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

error-tracking procedures, data dictionaries),
formal-interpersonal procedures (status-review
meetings, design-review meetings, code inspec-
tions), informal-interpersonal (group meetings
and co-location of requirements and develop-
ment staff, electronic communication such as
e-mail and electronics bulletin boards, and
interpersonal network). Their results showed the
value of both informal and formal interpersonal
communication for sharing information and
achieving coordination in software develop-
ment. Note though that this analysis focuses
more the media for exchanging information
rather than particular dependencies or coordi-
nation mechanisms that might be executed via
these media. That is, once you have called a
group meeting, what should you talk about?

coordination in FLOss
Development
A few studies have examined the work practices
and coordination modes adopted by FLOSS
teams in more detail, which is the focus of
this article (Iannacci, 2005; Scacchi, 2002;
Weber, 2004). Cubranic (1999) observed that
the main media used for coordination in FLOSS
development teams were mailing lists. Such a
low-tech approach is adopted to facilitate the
participation of would-be contributors, who
may not have access to or experience with more
sophisticated technology. The geographical
distribution of contributors and the variability in
time of contributors precluded the use of other
systems (e.g., systems that support synchronous
communication or prescriptive coordination
technology, such as workflow systems). Mailing
lists supported low-level coordination needs.
Also, Cubranic (1999) found no evidence of
the use of higher-level coordination, such as
group decision making, knowledge manage-
ment, task scheduling and progress tracking.
As they are the main coordination mechanisms,
the volume of information within mailing lists
can be huge. Mailing lists are therefore often
unique repositories of source information on
design choices and evolution of the system.
However, dealing with this volume of informa-
tion in large open source software projects can

require a large amount of manual and mental
effort from developers, who have to rely on
their memory to compensate for the lack of
adequate tools and automation.

In a well-known case study of two im-
portant FLOSS projects, namely Apache and
Mozilla, Mockus et al. (2002) distinguished
explicit (e.g., interface specification processes,
plans, etc.) and implicit coordination mecha-
nisms adopted for software development. They
argued that, because of its software structure,
the Apache development team had primarily
adopted implicit coordination mechanisms.
The basic server was kept small. Core develop-
ers worked on what interested them and their
opinion was fundamental when adding new
functionality. The functionality beyond the basic
server was added by means of various ancillary
projects, developed by a larger community that
interacted with Apache only through defined
interfaces. Such interfaces coordinate the effort
of the Apache developers: as they had to be
designed based on what Apache provided, the
effort of the Apache core group was limited. As
a result, coordination relied on the knowledge
of who had expertise in a given area and gen-
eral communication on who is doing what and
when. On the other hand, in the Mozilla project,
because of the interdependence among modules,
considerable effort is spent in coordination. In
this case, more formal and explicit coordination
mechanisms were adopted (e.g., module owners
were appointed who had to approve all changes
in their module).

Jensen & Scacchi (2005) modelled the
software-release process in three projects,
namely Mozilla, Apache and NetBeans. They
identified tasks, their dependencies and the ac-
tors performing them. However, they did not
analyze the coordination issues in depth and
did not focus specifically on the bug-fixing
process, which is the aim of this article. Rather,
their final goal was to study the relationships
among the three communities that form a Web
Information Infrastructure.

Iannacci (2005) adopted an organizational
perspective to study coordination processes
within a single large-scale and well-known

Journal of Database Management, 19(2), 1-30, April-June 2008 9

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

FLOSS development project, Linux. He iden-
tified three main (traditional) coordination
mechanisms, namely standardization, loose
coupling and partisan mutual adjustment.
Standardization is a coordination mechanism to
manage pooled dependencies emerging among
different contributors. It implies the definition
of well-defined procedures, such as in the case
of patch submission or bug-fixing procedures.
Loose coupling is used to manage sequential
dependencies among the different subgroups
of contributors. It is the coordination mecha-
nisms used to, for example, incorporating new
patches. Finally, partisan mutual adjustment is
a mechanism used to manage what Iannacci
(2005) called networked interdependencies,
an extension of the reciprocal dependencies
as proposed by Thompson (1967). Networked
interdependencies are those emerging among
contributors to specific part of the software.
Partisan mutual adjustment produces a sort of
structuring process so creating an informal (sub-
)organization. However, these findings are based
on a single exceptional case, the Linux project,
making it unclear how much can be generalized
to smaller projects. Indeed, most of the existing
studies are of large and well-known projects
and focused on the development process. To
our knowledge, no studies have analyzed the
bug-fixing process in depth within small FLOSS
development teams.

A coordination theory
Application:
the bug-Fixing Process
To ground our discussion of coordination theory,
we will briefly introduce the bug-fixing process,
which consists of the tasks needed to correct
software bugs. We decided to focus on the
bug-fixing process for three reasons. First, bug
fixing provides “a microcosm of coordination
problems” (Crowston, 1997). Second, a quick
response to bugs has been mentioned as a par-
ticular strength of the FLOSS process: as Ray-
mond (1998) puts it, “given enough eyeballs, all
bugs are shallow”. Finally, it is a process that
involves the entire developer community and
thus poses particular coordination problems.

While there have been several studies of FLOSS
bug fixing, few have analyzed coordination
issues within bug-fixing process by adopting
a process view. For example, Sandusky et al.
(2004) analyzed the bug-fixing process. They
focus their attention on the identification of the
relationships existing among bug reports, but
they do not examine in details the process itself.
In contrast to the prior work, our article provides
empirical evidence about coordination practices
within FLOSS teams. Specifically, we describe
the way the work of bug fixing is coordinated
in these teams, how these practices differ from
those of conventional software development
and thus suggest what might be learned from
FLOSS and applied in other settings.

We base our description on the work of
Crowston (1997), who described the bug-fix-
ing process observed at a commercial software
company. Such a process is below defined as
traditional because 1) it is carried out within
a traditional kind of organization (i.e., the
boundary are well defined, the environment
is not distributed, the organization structure
is defined) and 2) refers to the production of
commercial rather than FLOSS software. The
process is started by a customer who finds a
problem when using a software system. The
problem is reported (sometimes automatically
or by the customer) to the company’s response
center. In the attempt to solve the problem, per-
sonnel in the center look in a database of known
bugs. If a match is found, the fix is returned to
the customer; otherwise, after identifying the
affected product, the bug report is forwarded
to an engineer in the marketing center. The as-
signed engineer tries to reproduce the problem
and identify the cause (possibly requesting ad-
ditional information from the reporter to do so).
If the bug is real, the bug report is forwarded to
the manager responsible for the module affected
by the bug. The manager then assigns the bug
to the software engineer responsible for that
module. The software engineering diagnoses
the problem (if she finds that the problem is in a
different module, the report is forwarded to the
right engineer) and designs a fix. The proposed
fix is shared with other engineers responsible

10 Journal of Database Management, 19(2), 1-30, April-June 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

for modules that might be affected. When the
feedback from those engineers is positive, the
proposed design is transformed into lines of
code. If changes in other module are needed,
the software engineer also asks the responsible
engineers for changes. The proposed fix is then
tested, the eventual changed modules are sent
to the integration manager. After approving, the
integration manager recompiles the system, tests
the entire system and releases the new software
in the form of a patch. To summarize then, in
the traditional bug-fixing process, the following
tasks have been identified (Crowston, 1997):

Report, Try to solve the problem, Search da-
tabase for solution, Forward to the marketing
manager, Try to solve the problem/Diagnose the
problem, Forward to the Software Engineering
Group, Assign the bug, Diagnose the problem,
Design the fix, Verify affected modules and ask
for approval, Write the code for the fix, Test it,
Integrate changes, Recompile the module and
link it to the system.

After describing the above process,
Crowston (1997) went on to analyze the co-
ordination mechanisms employed. A number
of the tasks listed can be seen as coordination
mechanisms. For example, the search for du-
plicate bugs as well as the numerous forward
and verify tasks manage some dependency.
Searching for duplicate outputs is the coordi-
nation mechanism to manage a dependency
between two tasks that might have the same
output. In this case, the tasks are to respond to
bug reports from customers. These tasks can
be performed by diagnosing and repairing the
bug, but if the solution to the bug report can
be found in the database, then the effort taken
to solve it a second time can be avoided. Thus,
searching the database for a solution is a way
to manage a potential dependency between
the two bug-fixing tasks. Forwarding and
verifying tasks are coordination mechanisms
used to manage dependency between a task
and the actor appropriate to perform that task.
These steps are needed because many actors
are involved in the process and each of them

carry out a very specialized task, requiring ad-
ditional work to find an appropriate person to
perform each task.

rEsEArcH MEtHODOLOGY
To address our research question, how are bug
fixes coordinated in FLOSS projects, we carried
out a multiple case study of different FLOSS
projects, using the theoretical approach devel-
oped in the previous section. In this section, we
discuss sample selection and data sources, data
collection and data analysis, deferring a discus-
sion of our findings to the following section.

sample section
In this sub-section we describe the basis for
selecting projects for analysis. Projects to be
studied were selected from those hosted on
SourceForge, (http://sourceforge.net/), a Web-
based system that currently supports the devel-
opment of more than 100,000 FLOSS projects
(although only a small proportion of these are
actually active). We chose to examine projects
from a single source to control for differences
in available tools and project visibility. Because
the process of manually reading, rereading,
coding and recoding messages is extremely
labor-intensive, we had to focus our attention on
a small number of projects. We selected projects
to study in-depth by employing a theoretical
sampling strategy based on several practical
and theoretical dimensions.

First, we chose projects for which data we
need for our analysis are publicly available,
meaning a large number of bug reports. (Not
all projects use or allow public access to the
bug-tracking system.) Second, we chose teams
with more than 8 developers (i.e., those with
write access to the source code control system),
since smaller projects seemed less likely to ex-
perience significant coordination problems. The
threshold of eight members was chosen based on
our expectation that coordinating tasks within
a team would become more complicated as the
number of members increases. We assumed
that each member of the team could manage 4
or 5 relationship, but with eight members, we
expected some difficulty in coordination to arise.

Journal of Database Management, 19(2), 1-30, April-June 2008 11

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Only 140 projects of SourceForge met the first
two requirements in 2002 when we drew our
sample. Third, projects were chosen so as to
provide some comparison in the target audience
and addressed topic, as discussed below. Finally,
because we wanted to link coordination prac-
tices to project effectiveness, we tried to select
more and less effective development teams. To
this aim we used the definitions of effectiveness
proposed by Crowston et al. (2006a), who sug-
gest that a project is effective if it is active, the
resulting software is downloaded and used and
the team continues in operation. We selected
4 FLOSS projects to satisfy the mentioned
criteria. Specifically, from the 140 large active
projects, we selected two desktop chat clients
that are aimed at end users (KICQ and Gaim)
and two projects aimed primarily at developers
(DynAPI, an HTML library and phpMyAdmin, a
web-based database administration tool). A brief
description of the projects is reported in Table
1, including the project goal, age at the time of
the study, volume of communication and team
membership. A consequence of the requirement
of a significant number of bug reports is that all
four projects are relatively advanced, making
them representative of mature FLOSS projects.
Based on the definition proposed by Crowston
et al. (2006a), Kicq, Gaim and phpMyAdmin
were chosen as examples of effective projects
because they were active, the resulting software
was being downloaded and the group had been
active for a while. DynAPI was chosen as an
example of a less effective project because the
number of downloads and programming activ-
ity had rapidly decreased in the months leading
up to the study.

Data collection
In this sub-section we describe how data were
selected and collected. As mentioned above, all
of these projects are hosted on SourceForge,
making certain kinds of data about them eas-
ily accessible for analysis. However, analysis
of these data poses some ethical concerns that
we had to address in gaining human subjects
approval for our study. On the one hand, the
interactions recorded are all public and de-

velopers have no expectations of privacy for
their statements (indeed, the expectation is the
opposite, that their comments will be widely
broadcast). Consent is generally not required for
studies of public behaviour. On the other hand,
the data were not made available for research
purposes but rather to support the work of the
teams. We have gone ahead with our research
after concluding that our analysis does not pose
any likelihood of additional harm to the poster
above the availability of the post to the group
and in the archive available on the Internet.

We collected several kinds of data about
each of the cases. First, we obtained data indica-
tive of the effectiveness of each project, such
as its level of activity, number of downloads
and development status. Unfortunately, no
documentation on the organization structure,
task assignment procedures and coordination
practices adopted was available on the projects’
web sites (further supporting the position that
these teams do not employ formal coordination
methods). To get at the bug-fixing process, we
considered alternative sources of data. Inter-
viewing the developers might have provided
information about their perceptions of the
process, but would have required finding their
identities, which was considered problematic
given privacy concerns. Furthermore, reliance
on self-reported data raises concerns about
reliability of the data, the response rate and
the likelihood that different developers would
have different perceptions. While these issues
are quite interesting to study (e.g., to understand
how a team develops shared mental models of
a project, e.g., Crowston & Kammerer, 1998),
they seemed like distractions from our main
research question. Because of these concerns,
we elected to use objective data about the bug-
fixing process. Hence, the main source of data
about the bug-fixing process was obtained from
the archives of the bug tracking system, which
is the tool used to support the bug-fixing process
(Herbsleb et al., 2001, p. 13). These data are
particularly useful because they are unobtrusive
measures of the team’s behaviors (Webb &
Weick, 1979) and thus provide an objective de-

12 Journal of Database Management, 19(2), 1-30, April-June 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

scription of the work that is actually undertaken,
rather than perceptions of the work.

In the bug tracking system, each bug has a
request ID, a summary (what the bug is about),
a category (the kind of bug, e.g., system, inter-

face), the name of the team member (or user)
who submitted it, and the name of the team
member it was assigned to. An example bug
report in shown in Figure 1 (the example is ficti-
tious). As well, individuals can post messages

K
IC

Q
D

ynA
PI

G
aim

phpM
yA

dm
in

G
oal

IC
Q

 client for the K
D

E
project (a chat client)

D
ynam

ic H
TM

L library
M

ulti-platform
 A

IM
 client

(a chat client)
W

eb-based
database adm

inistration

R
egistration date

1999-11-19
2000-05-15

1999-11-13
2001-03-18

D
evelopm

ent Status
4 B

eta, 5 Production
Stable

5 Production
Stable

5 Production
Stable

5 Production
Stable

L
icense

G
PL

LG
PL, G

PL
G

PL
G

PL

Intended
A

udience
D

evelopers, End U
s-

ers/D
esktop

D
evelopers

A
dvanced End U

sers,
D

evelopers, End U
sers/

D
esktop

D
evelopers, End U

s-
ers/D

esktop, System

A
dm

inistrators

Topic
IC

Q
, K

 D
esktop Envi-

ronm
ent (K

D
E)

D
ynam

ic C
ontent

A
O

L Instant M
essenger,

IC
Q

, Internet R
elay C

hat,
M

SN
 M

essenger

Front-Ends, D
ynam

ic
C

ontent, System
s A

dm
in-

istration

O
pen bugs/

Total # of bugs
26 /88

45/220
269 /1499

29 /639

O
pen Support R

equests/
Total # of requests

12/18
20/107

3/125

O
pen Patches/ Total # of

Patches
1/8

14/144
75/556

7/131

O
pen Features requests/

Total # of requests
9/9

5/12
214/447

214/447

M
ailing lists

813 m
essages in 3 m

ail-
ing lists

9595 in 5 m
ailing lists

304 in 1 m
ailing list

(developers)
5456 in 5 m

ailing lists

of team

m
em

bers
9

11
9

9

Team
 m

em
ber roles (# in

role)
A

dm
in/project m

anager
(2); packager (1); de-
velopers (3); advisor/
m

entor/ consultant(1);
not specified (2)

A
dm

in/project m
anager

(1);
developers (4); adm

in
(3); not specified (3)

Project m
anager (1);

adm
in/

developer (1); support
m

anager (1); w
eb designer

(1); developers (3) not
specified (2)

Project m
anager/ adm

in
(1); adm

in/ developer (2);
developers (6)

Table 1. Four examined projects

Journal of Database Management, 19(2), 1-30, April-June 2008 13

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

regarding the bug, such as further symptoms,
requests for more information, etc. From this
system, we extracted data about who submitted
the bugs, who fixed them and the sequence of
messages involved in the fix. By examining the
name of the message senders, we can identify
the project and community members who are
involved in the bug-fixing process. Demo-
graphic information for the projects and devel-
opers and data from the bug tracking system
were collected in the period 17–24 November
2002. We examined 31 closed bugs for Kicq,
95 closed bugs for DynAPI, 51 bugs for Gaim
and 51 for PhPMyAdmin. The detailed text of
the bug reports is not reported because of space
restriction but is available on request.

Data Analysis
In this section we present our data analysis ap-
proach. For each of the bug reports, we carefully
examined the text of the exchanged messages
to identify the task carried out by each sender.
We first applied the framework developed by
Checkland & Scholes (1990), who suggested
identifying the owners, customers and environ-
ment of the process, the actors who perform it,
the transformation of inputs into outputs, the
environment and the worldview that makes the
process meaningful. We then followed the meth-
od described by Crowston & Osborn (2003),
who suggested expanding the analysis of the
transformation by identifying in more detail the

Figure 1. Example bug report and followup messages

1� Journal of Database Management, 19(2), 1-30, April-June 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

activities carried out in the transformation. We
identified the activities by inductively coding the
text of the messages in the bug tracking systems
of the four projects. We started by developing a
coding scheme based on prior work on bug fixing
(Crowston, 1997), which provided a template
of expected activities needed for task assign-
ment (those listed above). The coding system
was then evolved through examination of the
applicability of codes to particular examples.
For example the message:

I’ve been getting this same error every FIRST
time I load the dynapi in NS (win32). After re-
loading, it will work… loading/init problem?

represents a report submitted by another user
(someone other than the person who initially
identified and submitted the bug). This message
was coded as “report similar problems”. Table 2
shows the list of task types that were developed
for the coding. The lowest level elementary task
types were successively grouped into 6 main
types of tasks, namely Submit, Assign, Analyze,
Fix, Test & Post, and Close. A complete example
of the coded version of a bug report (the one
from Figure 1) is shown in Figure 2.

Once we had identified the process tasks,
we studied in depth the bug-fixing process as
carried out in the four cases. Specifically, we
compared the sequence of tasks across different

1.0.0 Submit (S)

1.1.0 Submit bug (code errors)

 1.1.1 Submit symptoms

 1.1.2 Provide code back trace (BT)

 1.2.0 Submit problems

 1.2.1 Submit incompatibility problems (NC)

2.0.0. Assign (As)

2.1.0 Bug self-assignment (A*)

2.2.0 Bug assignment (A)

3.0.0 Analyze (An)

3.1.0 Contribute to bug identification

 3.1.1Report similar problems (R)

 3.1.2 Share opinions about the bug (T)

3.2.0 Verify impossibility to fix the bug

 3.2.1 Verify bug already fixed (AF)

 3.2.2.Verify bug irreproducibility (NR)

 3.2.3 Verify need for a not yet supported function (NS)

 3.2.4 Verify identified bug as intentionally introduced (NCP)

3.3.0 Ask for more details

 3.3.1 Ask for Code version/command line (V)

 3.3.2 Ask for code back trace/examples (RBT/E)

3.4.0 Identify bug causes (G)

Table 2. Coded tasks in the bug-fixing process

continued on following page

Journal of Database Management, 19(2), 1-30, April-June 2008 1�

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

bugs to assess which sequences were most com-
mon and the role of coordination mechanisms
in these sequences. We also examined which
actors performed which tasks as well as looked

for ways to more succinctly present the pattern
of tasks, e.g., by presenting them as Markov
processes. Because of the shortness and rela-
tive simplicity of our task sequences, we could

 3.4.1 Identify and explain error (EE)

 3.4.2 Identify and explain bug causes different from code (PNC)

4.0.0 Fix (F)

4.1.0 Propose temporary solutions (AC)

4.2.0 Provide problem solution (SP)

4.3.0 Provide debugging code (F)

5.0.0 Test & Post (TP)

5.1.0 Test/approve bug solution

 5.1.1 Verify application correctness (W)

5.2.0 Post patches (PP)

5.3.0 Identify further problems with proposed patch (FNW)

6.0.0 Close

6.1.0 Close fixed bug/problem

6.2.0 Closed not fixed bug/problems

 6.2.1 Close irreproducible bug (CNR) and close it

 6.2.2 Close bug that asks for not yet supported function (CNS)

 6.2.3 Close bug identified as intentionally introduced (CNCP)

Table 2. continued

Bug ID Summary Assigned to Submitter

0000000 crash with
alfa chat gills kkhub

Task Person Comments

(S) kkhub

(V) cenis asks what version kkhub is running

(R) cobvnl reports the same problem as kkhub. submits information about the
operating systems and the libraries

(V) cenis asks again what version both users are running

(W) kkhub reports the most recent version of cicq works

(TP&C) cobvnl reports version information and close the bug

(C) bug closed

Figure 2. Coded version of bug report in Figure 1

1� Journal of Database Management, 19(2), 1-30, April-June 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

exactly match task sequences, rather than having
to statistically assess the closeness of matches
to be able to form clusters (Sabherwal & Robey,
1995). Therefore, we were able to analyze the
sequences by simple tabulation and counting,
though more sophisticated techniques would be
useful for larger scale data analysis. In the next
Section we present the results of our analysis.

FINDINGs
In this section we present the findings from our
analysis of the bug-fixing process in the four

projects and the coordination mechanisms em-
ployed. Data about the percentage of submitted,
assigned and fixed bugs both by team members
and individuals external to the team for each
project are reported in Table 3. Table 4 sum-
marizes our findings regarding the nature of the
bugs fixing process in the four projects.

We now present our overall analysis of
the bug-fixing process. Each instance of a bug-
fixing process starts (by definition) with a bug
submission (S) and finishes with bug closing
(C). Submitters may submit problems/symp-

Kicq DynAPI Gaim phpMyAdmin

Bugs submitted by team members 9.7% 21% 0% 21.6%

Bugs submitted by members external to the
team 90.3% 78.9% 100% 78.4%

Bug assigned/self-assigned
of which: 9.7% 0% 2% 1%

Assigned to team members 0% - 100% 100%

Self assigned 66% 0%

Assigned to members external to the team 33% - - 0%

Bug fixed 51,6% 42,1% 51% 80%

Fixed by team members 81,3% 50% 84% 90,2%

Bug fixed by members external to the team 18,7% 50% 16% 9.8%

Kicq DynAPI Gaim phpMyAdmin

Min task sequence 3 2 2 2

Max task sequence 8 12 9 13

Uncommon tasks
(count) Bug assignment (3) Bug assignment

(0) Bug assignment (0) Bug assignment (1)

Community members 18 53 23 20

Team members’
participation 2 of 9 6 of 11 3 of 9 4 of 10

Most active team
members
Role/ name

Project mgr: denis;
Developer: davidvh

A d m i n :
r a i n w a t e r ;
Ext member:
dcpascal

Admin-developer:
warmenhoven;
Developer: rob-
flynn

Admin-developer:
loic1;
Admin-developer
lem9.

Max posting by single
community member 2 6 4 3

Not fixable bug closed 8 5 5 -

Table 3. The bug-fixing process: Main results

Table 4. Observed characteristics of the bug-fixing processes in the four projects

Journal of Database Management, 19(2), 1-30, April-June 2008 1�

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

toms associated with bugs (Ss), incompatibility
problems (NC) or/and also provide information
about code back trace (BT). After submission,
the team’s project managers or administrators
may assign the bug to someone to be fixed ((A);
(A*) if they self-assign the bug). Other members
of the community may report similar problems
they encountered (R), discuss bug causes (T),
identify bug causes (G) and/or verify the im-
possibility of fixing the bug. Participants often
ask for more information to better understand
the bug’s causes (An). In most cases, but not
always, after some discussion, a team member
spontaneously decides to fix (F) the bug. Bug
fixing may be followed by a test and the submis-
sion of a patch (TP). Testing is a coordination
mechanism that manages usability between
producing and using a patch, by ensuring that
the patch is usable. However, as later explained,
in the examined projects this type of activity
is not often found. The bug is then closed (C).
Bugs may also be closed because they cannot be
fixed, e.g., if they are not reproducible (CNR),
involve functions not supported yet (CNS)
and/or are intentionally introduced to add new
functionality in the future (CNCP). Notice that
the closing activity is usually attributed to a
particular user.

For our analysis, we consider Submission,
Analysis, Fix and Close to be operative activities,
while Assignment, Test and Posting are coordi-
nation mechanisms. As already discussed, As-

signment is the coordination mechanisms used
to manage the dependency between a task and
the actor appropriate to perform it. Posting is
the mechanisms used to manage the dependency
between a task and its customers (it makes the
fix available to the persons that need it).

The tasks identified above are linked by
sequential dependencies as shown in Figure 3.
These dependencies were identified by consider-
ing the logical connection between tasks based
on the flow of resources. For example, a patch
can not be tested before it is created. Because
the dependencies can be satisfied in different
orders, different sequences of the activities are
possible. The tasks and their sequence change
from bug to bug. Figure 3 shows the most
frequent sequences observed, as identified by
tabulating and counting the sequences.

Table 5 shows the portion of processes that
follow each possible paths, based on the col-
lected ways the bug-fixing process is observed
to be performed within the FLOSS teams. For
example, row 1 of Table 5 is read as follows.
In the Dynapi project, submission always oc-
curs as the first task (as it does for all of the
groups, by definition), while the second task
is S in 26% of cases, An in 39% of cases, F in
19% of cases, TP in 1% of cases and C in 15%
of cases, and so on.

In Table 6, we describe the occurrences per
task for the four projects and the average number
of tasks to fix bugs. A χ2 test shows a significant

1 submit

2 assign

3 analyze

� fix

� test&post

� close

L

L

1

L

L

L

Figure 3. Task dependencies in the bug-fixing process

18 Journal of Database Management, 19(2), 1-30, April-June 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

i task i-1 task i Kicq Dynapi Gaim PhPmyadmin

2 S S 42% 26% 4% 2%

 As 6% - 2% 2%

 An 39% 39% 61% 41%

 F 13% 19% 24% 45%

 TP - 1% 2% 8%

 C - 15% 8% 2%

3 S An 38% 36% 50% 100%

 F 62% 40% 50% -

 TP - 8% - -

 C - 16% - -

 As An - - 100%

F 50% - 100% -

 TP 50% - - -

 An S 8% - - 5%

 An 25% 41% 58% 52%

 F 8% 11% 3% 29%

 TP - - 3% -

 C 58% 49% 35% 14%

 F An - 11% - 13%

 F 50% 22% 8% 4%

 TP - 6% - 4%

 C 50% 61% 92% 78%

 TP An - - - 50%

 F - 100% 100% -%

 TP - - - -50%

 C - - - -

 C An - 7% - -

C - 93% - -

4 S S - - - -

 An 100% - - -

 F - - - 100%

 TP - - - -

 C - - - -

 An S - 4% 5% -

 An 13% 48% 53% 50%

 F 25% 11% 21% 11%

Table 5. Portion of processes for each possible path

continued on following page

Journal of Database Management, 19(2), 1-30, April-June 2008 19

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

i task i-1 task i Kicq Dynapi Gaim PhPmyadmin

 TP - 4% - 6%

 C 63% 33% 21% 33%

 F S - - - -

As 8% - - -

 An 11% 20%

 F 33% 16% - 14%

 TP - 5% - 29%

 C 58% 68% 80% 57%

 TP S - - - -

 An - - - -

 F - 33% - 33%

 TP - - - 33%

 C - 67% 100% 33%

 C C - - 100% -

5 S AN - - 100% -

 F - - - -

 TP - 100% - -

As F 100% - - -

 An S - - - -

 An 50% 27% 73% 67%

 F - 13% 18% 11%

 TP - - - 11%

 C 50% 60% 9% 11%

 F An 17% 14% - 20%

 F -- - 25% -

 TP - - 25% -

 C 83% 86% 50% 80%

 TP An - - - -

 F - - - 50%

 TP - 100% - -

 C - - - 50%

6 An S - 11% -

 As 50% - - 14%

 An - 20% 22% 43%

 F - - 11% 29%

TP - 20% - -

 C 50% 60% 56% 14%

Table 5. continued

continued on following page

20 Journal of Database Management, 19(2), 1-30, April-June 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

i task i-1 task i Kicq Dynapi Gaim PhPmyadmin

 F S - - - -

 An - - - -

 F - - - -

 TP - - - 33%

 C 100% 100% - 67%

 TP An - - - -

 F - 100% - -

 TP - - - -

 C - - - 100%

7 S AN - - 50% -

 © - - 50% -

 As F 100% - - 100%

 An S - - - 33%

An - 33%

 F - 100% 100% -

 TP - - - -

 C - - - 33%

 F An - 100% - -

 F - - - -

 TP - - - -

 C - - 100% 100%

 TP F - 100% - 100%

8 S An - - - 100%

 F - - - -

An An - 100% - -

F - 100% 100%

 F An - 50% - -

TP - - - 50%

 C 100% 50% 100% 50%

9 An An - 50% - 100%

 C - 50% - -

 F AN - - - 100%

 C - - 100% -

TP TP - - - 100%

10 An An - 100% - 50%

 F - - - 50%

Table 5. continued

continued on following page

Journal of Database Management, 19(2), 1-30, April-June 2008 21

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

difference in the distribution of task types across
projects (p<0.001). On all projects, submit is
the task that always appears first, while analyze
is the most common second task and fix, third.
The first three most frequent task sequences
are reported in Table 7. As noted above, given
the limited number of examined sequences, the
sequences were manually identified. Finally, in
Table 8 we show which tasks are carried out
by which roles. Please notice that differences
in percentage shown in Table 3 and Table 8 are
due to the fact that results reported in Table 8
are calculated based on the total number of
tasks carried out per bug. For example, in Table
3 the considered submissions are those carried
out only as first task. In Table 8 all submissions
tasks (i.e. also those carried out as second, third
etc. task) are considered. As reported in Table
2, submissions tasks can be more than one per
bug because submissions can occur also in the
form of a submit sub-task. The same stands for
the fixing tasks. In Table 3 only the final fixing
tasks are considered.

A detailed description of the process as
performed in the four cases is provided below
considering both the sequence of tasks and the
participation in the bug-fixing process.

Kicq
The minimal sequence is composed of three
tasks, the longest by eight. Bug fixing is usu-
ally the second task in the sequence, meaning
that it is most common for bugs to be fixed
immediately after they are submitted, which
is different from the overall picture in which
analysis was most common. Bug assignment is
a quite rare task, as only three bugs are formally
assigned. Eight bugs were closed because they
were considered to be not fixable.

There are 18 identified users, but many
(anonymous) users submitted bugs and con-
tributed to analysis and fixing. Team members
are not very active in bug fixing, except for
one of the two project managers (denis), who
is involved in all the tasks and, in particular, in

i task i-1 task i Kicq Dynapi Gaim PhPmyadmin

TP - - - 100%

11 An An - 100% 50%

 F - - - 50%

 F C - - - 100%

12 An An - - - 100%

 C - 100% - -

 F C - - - 100%

13 An C - 100% - 100%

Table 5. continued

 Task

Project (bugs)
(S) (Ag) (An) (F) (TP) (C) Avr. tasks

per bug

KICQ (31) 44 4 24 23 0 31 4.4

Dynapi (95) 121 0 94 54 9 95 3.8

Gaim (51) 71 1 77 28 4 51 4.2

Phpmyadmin (51) 54 2 66 45 15 51 4.6

Table 6. Task occurrences and average number of tasks per projects

22 Journal of Database Management, 19(2), 1-30, April-June 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

First
task

Second
task

Third
task

Fourth
Task Occurrences

Kicq
S
S
S

An
F
An

C
C
F

-
-
C

13
11
2

DynAPI
S
S
S

An
F
C

C
C
-

-
-
-

34
24
17

Gaim
S
S
S

An
F
An

C
C
F

-
-
C

21
13
6

phpMy-
Admin

S
S
S

F
An
An

C
C
F

-
-
C

19
8
7

All proj-
ects

S
S
S

An
F
C

C
C
-

-
-
-

76
67
22

Table 7. Most frequent task sequences

task ROLES/PROJECT
Kick

 devel pm % of total tasks

S 4 9%

As 4 100%

An 18 75%

F 1 15 70%

TP

total 2 49

 Dynapi

 devel admin admin/develop no role % of total tasks

S 9 6 1 10 21%

As

An 27 3 32%

F 18 1 2 35%

TP 2 1 33%

total 9 53 3 15

 Gaim

 admin/develop develop supp. mang. % of total tasks

S 0%

As 1 100%

An 33 11 1 58%

Table 8. Tasks carried out by different roles

continued on following page

Journal of Database Management, 19(2), 1-30, April-June 2008 23

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

bug analysis and fixing. Out of 23 fixed bugs,
16 are fixed by denis. Apart from a developer
(davidvh), the other project members seem
not take part in the bug-fixing process at all.
However, it is noteworthy that the bug track-
ing system register three bugs as submitted and
assigned to the administrator (bill), although
he does not otherwise take part in the process.
Most of the community members have posted
just one bug, and only two of them posted 2
bugs each.

Dynapi
The minimal sequence is composed of two
tasks, the longest by 12. Again, bug assignment
is not explicitly carried out; apparently com-
munity or team members decide autonomously
to take part to the bug-fixing process. However,
the system reports that six bugs (out of 95) are
assigned to an administrator and the rest to a
member external to the team. Five bugs are
closed because they are said to be not fixable.
Bug fixing is usually the second or the third
task in the sequence.

Team members are not very active except
for an administrator (rainwater), who is involved
in all the tasks and, in particular, in bug analysis
and fixing. The other five team members (two
without a specific role, one administrator/de-
veloper, one developer and one administrator)
are mostly involved in bug fixing. The com-

munity members involved in the process are
47 persons plus some anonymous posts. Most
of them submitted just one bug, but some
submitted more (e.g., one submitted six bugs).
Community members are mostly involved in
bug submission but some also carry out other
tasks. In particular, one of them (dcpascal) is
very active in all the process tasks. Out of 57
fixed bugs, 20 are fixed by a team member (the
project manager).

Gaim
The minimal sequence is composed of two
tasks, the longest by nine. Bug assignment is
not explicitly carried out, as community or team
members decide autonomously to take part to
the bug-fixing process. However, the system
reports that 24 bugs (out of 51) are assigned to
an administrator (and the rest to member exter-
nal to the team). Five bugs are directly closed
because they are said to be not fixable.

Team members are not very active in bug
fixing except for the administer/developer
(warmenhoven) and a developer (robflynn), who
are involved in many tasks and, in particular, in
bug analysis and fixing. Apart from them, just
another member of the project team, a developer
(lschiere), is also involved in the bug fixing. The
community members involved in the process are
21 persons plus some anonymous users. Most
of them posted just one bug (2 of them posted

F 17 6 82%

TP 100%

total 52 19 1

 Phpmyadmin

 admin/develop pm % of total tasks

S 11 1 22%

As 2 100%

An 49 74%

F 40 89%

TP 10 93%

total 115 1

Table 8. continued

2� Journal of Database Management, 19(2), 1-30, April-June 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

five bugs, one 4 bugs). Some of them are also
involved in bug analysis and fixing. Out of 29
fixed bugs, 23 are fixed by a team member (the
project manager).

Phpmyadmin
The minimal sequence is composed of two
tasks, the longest by thirteen. Bug assignment
is a quite rare task, as only one bug is formally
assigned. The assignment is carried out by an
administrator/developer (lem9) and directed to
a team member (loic1). However, the system
reports that all 51 are assigned, of which 40 to
team members. Bug fixing is usually the second
or the third task.

Team members are not very active in the
process, except for two administer/developers
(loic1 and lem9), who are involved in all the
tasks and, in particular, in bug analysis and
fixing (but also submission). Apart from them,
two team members take part to the process, a
project manager/adminster (swix) and a devel-
oper (robbat2), that are involved (not heavily)
in bug submission and analysis. The community
is composed of 16 members plus some anony-
mous users. Most of them have just posted one
bug (two of them posted 3 bugs), but some are
also involved in bug analysis and fixing. Out
of 49 fixed bugs, 44 are fixed by team member
(administrator/developers).

DIscUssION
In this section, we discuss the implications of
our findings for understanding the coordination
of bug fixing in FLOSS teams. Our findings
provide some interesting insights on the bug-
fixing process for FLOSS development in these
teams. First, process sequences are on average
quite short (four tasks) and they seem to be quite
similar: submit, (analyze), fix and close. As
shown in Table 3, formal task assignments are
quite uncommon: only few bugs are formally
assigned. Coordination seems rather to sponta-
neously emerge. From bug description and ini-
tial analysis, those who have the competencies
autonomously decide to fix the bug and simply
go ahead and do so. That activity is facilitated
by the supplied bug report and analysis, which is

often undertaken by several contributors. Apart
from the procedure to submit bugs (we analyzed
only bugs submitted through the bug tracking
system), we do not observe any other formal
process: roles are not predefined, delivery dates
are not assigned nor are formal-interpersonal,
formal-impersonal or informal-interpersonal
procedures adopted. The lack of assignment is
one of main aspects differentiating the process
as it occurs in FLOSS development team from
the traditional commercial bug-fixing process
described above.

Testing is also quite an uncommon task in
the data. Most of the proposed fixes are directly
posted, though presumably after personal testing
that is not documented. If no one describes the
emergence of new problems with these fixes,
they are automatically posted and the relevant
bug closed without a formal test process. It is
important also to note that many of the posted
problems do not represent real bugs (i.e. they
have been already fixed, are not reproducible,
have been intentionally produced, are associated
to functions not yet supported or are associated
to related programs), so they are directly closed
with that explanation.

Another striking finding is that the bug-
fixing process is apparently carried out without
any explicit discussion about where knowledge
is located in the team, contrary to the findings
of Faraj and Sproull (2000), who stress the
importance of expertise coordination for team
effectiveness (they distinguish expertise co-
ordination from what they call administrative
coordination, which is the focus of this article).
They define expertise coordination as the man-
agement of knowledge and skill dependencies.
To manage knowledge it is necessary to know
where it is located within development team,
where it is needed and how to access it. However,
in our observations, the knowledge needs seem
to emerge by “(informal and asynchronous)
electronic meetings”.

The bug tracking system represents a sort
of organizational memory, storing bug reports
and solutions found to submitted problems
(which not always are real bugs). However,
as discussed in Cubranic (1999), the large

Journal of Database Management, 19(2), 1-30, April-June 2008 2�

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

number of emails stored makes it difficult for
contributors to easily identify the solutions to
their own problems, so making different users
repeat the same (already fixed or addressed)
submission more times. In those cases (i.e., for
bugs closed without being fixed or the attended
patches posted), it is usually the team members
that act as “memory”.

A further difference is that in these projects,
the process is performed by few team members
(usually not more that two or three) working
with a member of the larger community. Team
members (usually project managers, adminis-
trators or developers) are most involved in bug
fixing, testing and posting. Surprisingly, only
a few members of the team are involved in the
process. The other participants are active users
who submit bugs or contribute to their analysis.
We also noted striking differences in the level
of contribution to the process. The most active
users in the projects carried out most of the
tasks while most others contributed only once
or twice. Most community members submit
only one bug; only two or three members of
the involved community are involved in fixing
tasks and can be referred to as co-developers.
As expected, the most widely dispersed type of
action was submitting a bug, while diagnosis
and bug-fixing activities were concentrated
among a few individuals.

As we have few members of the team and
few members of the community (co-developers)
mostly involved in bug fixing and many users/
members of the community (active users) mostly
involved in bug submission, the organizational
models proposed in the literature (Cox, 1998)
seem to be valid for the bug-fixing process. It
would be interesting to further investigate if
those, among the active users also involved in
bug fixing also contribute to software coding,
e.g., by analysis of contributions of source code
independent of bug fixes.

As an apparently less effective project, we
expected to find that DynAPI had a smaller ac-
tive user base than the other projects. However,
as noted above, our data shows the opposite.
However, our estimation of the effectiveness
of the projects is based on activity levels. It

appears that DynAPI somehow does not benefit
from its larger community in increased activ-
ity. One striking difference is the proportion
of bugs fixed by the team members, shown in
Table 3, which is much lower in DynAPI than
in the other projects. This finding suggests
that the contribution of core members may be
particularly important in the effectiveness of the
team. The case studies presented here are not
sufficient to test this hypothesis, so it is one that
should be followed up in future studies.

cONcLUsION
In this article, we investigated the coordination
practices adopted within four FLOSS devel-
opment teams. In particular, we analyzed the
bug-fixing process, which is considered central
to the effectiveness of the FLOSS process.
The article provided some interesting results.
The task sequences we observed were mostly
sequential and composed of few steps, namely
submit, fix and close. Second, our data supports
the observation that FLOSS processes seem
to lack traditional coordination mechanisms
such as task assignment. Third, effort is not
equally distributed among process actors. A
few contribute heavily to all tasks, while the
majority just submit one or two bugs. As a
result, the organization structure reflected in
the process resembles the one proposed in the
literature for the FLOSS development process.
Few actors (core developers), usually team
project managers or administrators, are mostly
involved in bug fixing. Most of the involved
actors are active users instead of developers,
who just submit bug reports. In between are few
actors, external to the team, who submit bugs
and contribute to fixing them. Finally, while
we did not find obvious associations between
coordination practices and project effective-
ness, we did notice a link to participation: our
least effective team also had the lowest level of
participation from core developers, suggesting
their importance, even given the more widely
distributed participation possible.

The article contributes to fill a gap in the lit-
erature by providing a picture of the coordination
practices adopted within FLOSS development

2� Journal of Database Management, 19(2), 1-30, April-June 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

team. Besides, the article proposes an innova-
tive research methodology (for the analysis of
coordination practices FLOSS development
teams) based on the collection of process data by
electronic archives, the codification of message
texts, and the analysis of codified information
supported by the coordination theory.

Based on the analysis of task carried out
and the attendant coordination mechanisms,
we argue that the bazaar metaphor proposed by
(Raymond, 1998) to describe the FLOSS orga-
nization structure is still valid for the bug-fixing
process. As in a bazaar, the actors involved in
the process autonomously decide the schedule
and contribution modes for bug fixing, making
a central coordination action superfluous.

As with all research, the current article
has some limitations that limit the scope of our
current conclusions and suggests directions for
further research. First, although the selected
projects are quite different in terms of target
audience and topic, other characteristics (not
examined because they are not explicitly present
on the project web sites) could be shared among
projects so affecting the obtained results. In the
future, we would like to deepen our knowledge
about the coordination practices adopted by the
four projects by directly interviewing some
of the involved actors. Second, due to the
limited number of examined bugs, the process
sequences have been manually examined. In
the future, we intend to enlarge the number of
examined bugs and adopt automatic techniques
(e.g. the optimal matching technique) to analyze
and classify the task sequences. In particular,
we plan to further explore the hypothesis about
the importance of core group members by
examining a larger number of projects (e.g.,
to examine the change in the population over
time). Finally, in the article we only examined
administrative coordination. In the future, we
intend to examine also expertise coordination
in more detail. A particular interesting consider-
ation here is the development of shared mental
models that might support the coordination of
the teams’ processes.

rEFErENcE
Ahuja, M. K., Carley, K., & Galletta, D. F. (1997).
Individual performance in distributed design groups:
An empirical study. Paper presented at the SIGCPR
Conference, San Francisco.

Alho, K., & Sulonen, R. (1998). Supporting virtual
software projects on the Web. Paper presented at the
Workshop on Coordinating Distributed Software
Development Projects, 7th International Workshop
on Enabling Technologies: Infrastructure for Col-
laborative Enterprises (WETICE ’98).

Anthes, G. H. (2000, June 26). Software Development
goes Global. Computerworld Magazine.

Bandow, D. (1997). Geographically distributed work
groups and IT: A case study of working relationships
and IS professionals. In Proceedings of the SIGCPR
Conference (pp. 87–92).

Bélanger, F. (1998). Telecommuters and Work
Groups: A Communication Network Analysis. In
Proceedings of the International Conference on
Information Systems (ICIS) (pp. 365–369). Helsinki,
Finland.

Bessen, J. (2002). Open Source Software: Free
Provision of Complex Public Goods: Research on
Innovation.

Bezroukov, N. (1999a). A second look at the Cathedral
and the Bazaar. First Monday, 4(12).

Bezroukov, N. (1999b). Open source software de-
velopment as a special type of academic research
(critique of vulgar raymondism). First Monday,
4(10).

Boulding, K. E. (1956). General systems theory—The
skeleton of a science. Management Science, 2(April),
197–208.

Britton, L. C., Wright, M., & Ball, D. F. (2000). The
use of co-ordination theory to improve service qual-
ity in executive search. Service Industries Journal,
20(4), 85–102.

Brooks, F. P., Jr. (1975). The Mythical Man-month:
Essays on Software Engineering. Reading, MA:
Addison-Wesley.

Butler, B., Sproull, L., Kiesler, S., & Kraut, R. (2002).
Community effort in online groups: Who does the
work and why? In S. Weisband & L. Atwater (Eds.),

Journal of Database Management, 19(2), 1-30, April-June 2008 2�

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Leadership at a Distance. Mahwah, NJ: Lawrence
Erlbaum.

Carmel, E. (1999). Global Software Teams. Upper
Saddle River, NJ: Prentice-Hall.

Carmel, E., & Agarwal, R. (2001). Tactical approach-
es for alleviating distance in global software develop-
ment. IEEE Software(March/April), 22–29.

Checkland, P. B., & Scholes, J. (1990). Soft Systems
Methodology in Action. Chichester: Wiley.

Conway, M. E. (1968). How do committees invent.
Datamation, 14(4), 28–31.

Cox, A. (1998). Cathedrals, Bazaars and the Town
Council. Retrieved 22 March, 2004, from http://
slashdot.org/features/98/10/13/1423253.shtml

Crowston, K. (1997). A coordination theory approach
to organizational process design. Organization Sci-
ence, 8(2), 157–175.

Crowston, K., & Howison, J. (2006). Hierarchy and
centralization in Free and Open Source Software
team communications. Knowledge, Technology &
Policy, 18(4), 65–85.

Crowston, K., Howison, J., & Annabi, H. (2006a).
Information systems success in Free and Open Source
Software development: Theory and measures. Soft-
ware Process—Improvement and Practice, 11(2),
123–148.

Crowston, K., & Kammerer, E. (1998). Coordination
and collective mind in software requirements devel-
opment. IBM Systems Journal, 37(2), 227–245.

Crowston, K., & Osborn, C. S. (2003). A coordination
theory approach to process description and redesign.
In T. W. Malone, K. Crowston & G. Herman (Eds.),
Organizing Business Knowledge: The MIT Process
Handbook. Cambridge, MA: MIT Press.

Crowston K., Scozzi B., (2003). Open Source Soft-
ware projects as virtual organizations: competency
rallying for software development. IEE Proceedings
Software, 149(1), 3-17.

Crowston, K., Wei, K., Li, Q., Eseryel, U. Y., &
Howison, J. (2005). Coordination of Free/Libre Open
Source Software development. Paper presented at the
International Conference on Information Systems
(ICIS 2005), Las Vegas, NV, USA.

Crowston, K., Wei, K., Li, Q., & Howison, J. (2006b).
Core and periphery in Free/Libre and Open Source

software team communications. Paper presented at
the Hawai’i International Conference on System
System (HICSS-39), Kaua’i, Hawai’i.

Cubranic, D. (1999). Open-source software develop-
ment. Paper presented at the 2nd Workshop on Soft-
ware Engineering over the Internet, Los Angeles.

Curtis, B., Krasner, H., & Iscoe, N. (1988). A field
study of the software design process for large systems.
Communications of the ACM, 31(11), 1268–1287.

Curtis, B., Walz, D., & Elam, J. J. (1990). Studying
the process of software design teams. In Proceedings
of the 5th International Software Process Workshop
On Experience With Software Process Models (pp.
52–53). Kennebunkport, Maine, United States.

Cutosksy, M. R., Tenenbaum, J. M., & Glicksman,
J. (1996). Madefast: Collaborative engineering
over the Internet. Communications of the ACM,
39(9), 78–87.

de Souza, P. S. (1993). Asynchronous Organizations
for Multi-Algorithm Problems. Unpublished Doctoral
Thesis, Carnegie-Mellon University.

DeSanctis, G., & Jackson, B. M. (1994). Coordination
of information technology management: Team-based
structures and computer-based communication sys-
tems. Journal of Management Information Systems,
10(4), 85.

Di Bona, C., Ockman, S., & Stone, M. (Eds.). (1999).
Open Sources: Voices from the Open Source Revolu-
tion. Sebastopol, CA: O’Reilly & Associates.

Drucker, P. (1988). The Coming of the New Organi-
zation. Harvard Business Review(3–15).

Faraj, S., & Sproull, L. (2000). Coordinating Exper-
tise in Software Development Teams. Management
Science, 46(12), 1554–1568.

Finholt, T., Sproull, L., & Kiesler, S. (1990). Com-
munication and Performance in Ad Hoc Task Groups.
In J. Galegher, R. F. Kraut & C. Egido (Eds.), Intel-
lectual Teamwork. Hillsdale, NJ: Lawrence Erlbaum
and Associates.

Franck, E., & Jungwirth, C. (2002). Reconciling
investors and donators: The governance structure of
open source (Working Paper No. No. 8): Lehrstuhl
für Unternehmensführung und -politik, Universität
Zürich.

Gacek, C., & Arief, B. (2004). The many meanings
of Open Source. IEEE Software, 21(1), 34–40.

28 Journal of Database Management, 19(2), 1-30, April-June 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Galbraith, J. R. (1973). Designing Complex Organi-
zations. Reading, MA: Addison-Wesley.

Grabowski, M., & Roberts, K. H. (1999). Risk
mitigation in virtual organizations. Organization
Science, 10(6), 704–721.

Grinter, R. E., Herbsleb, J. D., & Perry, D. E.
(1999). The Geography of Coordination: Dealing
with Distance in R&D Work. In Proceedings of the
GROUP ‘99 Conference (pp. 306–315). Phoenix,
Arizona, US.

Hallen, J., Hammarqvist, A., Juhlin, F., & Chrigstrom,
A. (1999). Linux in the workplace. IEEE Software,
16(1), 52–57.

Hann, I.-H., Roberts, J., Slaughter, S., & Fielding,
R. (2002). Economic incentives for participating in
open source software projects. In Proceedings of the
Twenty-Third International Conference on Informa-
tion Systems (pp. 365–372).

Herbsleb, J. D., & Grinter, R. E. (1999a). Archi-
tectures, coordination, and distance: Conway’s law
and beyond. IEEE Software(September/October),
63–70.

Herbsleb, J. D., & Grinter, R. E. (1999b). Splitting
the organization and integrating the code: Conway’s
law revisited. Paper presented at the Proceedings of
the International Conference on Software Engineer-
ing (ICSE ‘99), Los Angeles, CA.

Herbsleb, J. D., Mockus, A., Finholt, T. A., &
Grinter, R. E. (2001). An empirical study of global
software development: Distance and speed. Paper
presented at the Proceedings of the International
Conference on Software Engineering (ICSE 2001),
Toronto, Canada.

Hertel, G., Niedner, S., & Herrmann, S. (2003).
Motivation of Software Developers in Open Source
Projects: An Internet-based Survey of Contribu-
tors to the Linux Kernel. Research Policy, 32(7),
1159–1177.

Humphrey, W. S. (2000). Introduction to Team
Software Process: Addison-Wesley.

Iannacci, F. (2005). Coordination processes in OSS
development: The Linux case study. Retrieved
21 September, 2006, from http://opensource.mit.
edu/papers/iannacci3.pdf

Jarvenpaa, S. L., & Leidner, D. E. (1999). Communi-
cation and trust in global virtual teams. Organization
Science, 10(6), 791–815.

Jensen, C., & Scacchi, W. (2005). Collaboration,
Leadership, Control, and Conflict Negotiation in
the Netbeans.org Open Source Software Develop-
ment Community. In Proceedings of the Hawai’i
International Conference on System Science (HICSS
2005). Big Island, Hawai’i.

Kaplan, B. (1991). Models of change and information
systems research. In H.-E. Nissen, H. K. Klein & R.
Hirschheim (Eds.), Information Systems Research:
Contemporary Approaches and Emergent Tradi-
tions (pp. 593–611). Amsterdam: Elsevier Science
Publishers.

Kogut, B., & Metiu, A. (2001). Open-source software
development and distributed innovation. Oxford
Review of Economic Policy, 17(2), 248–264.

Kraut, R. E., Steinfield, C., Chan, A. P., Butler, B., &
Hoag, A. (1999). Coordination and virtualization: The
role of electronic networks and personal relationships.
Organization Science, 10(6), 722–740.

Kraut, R. E., & Streeter, L. A. (1995). Coordination
in software development. Communications of the
ACM, 38(3), 69–81.

Krishnamurthy, S. (2002). Cave or Community? An
Empirical Examination of 100 Mature Open Source
Projects. First Monday, 7(6).

Lawrence, P., & Lorsch, J. (1967). Organization and
Environment. Boston, MA: Division of Research,
Harvard Business School.

Leibovitch, E. (1999). The business case for Linux.
IEEE Software, 16(1), 40–44.

Lerner, J., & Tirole, J. (2001). The open source move-
ment: Key research questions. European Economic
Review, 45, 819–826.

Madanmohan, T. R., & Navelkar, S. (2002). Roles
and Knowledge Management in Online Technology
Communities: An Ethnography Study (Working paper
No. 192): IIMB.

Malone, T. W., & Crowston, K. (1994). The interdis-
ciplinary study of coordination. Computing Surveys,
26(1), 87–119.

Journal of Database Management, 19(2), 1-30, April-June 2008 29

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Markus, M. L., Manville, B., & Agres, E. C. (2000).
What makes a virtual organization work? Sloan
Management Review, 42(1), 13–26.

Markus, M. L., & Robey, D. (1988). Information
technology and organizational change: Causal
structure in theory and research. Management Sci-
ence, 34(5), 583–598.

Massey, A. P., Hung, Y.-T. C., Montoya-Weiss, M.,
& Ramesh, V. (2001). When culture and style aren’t
about clothes: Perceptions of task-technology “fit”
in global virtual teams. In Proceedings of GROUP
’01. Boulder, CO, USA.

McCann, J. E., & Ferry, D. L. (1979). An approach for
assessing and managing inter-unit interdependence.
Academy of Management Review, 4(1), 113–119.

Metiu, A., & Kogut, B. (2001). Distributed Knowl-
edge and the Global Organization of Software De-
velopment (Working paper). Philadelphia, PA: The
Wharton School, University of Pennsylvania.

Mintzberg, H. (1979). The Structuring of Organiza-
tions. Englewood Cliffs, NJ: Prentice-Hall.

Mockus, A., Fielding, R. T., & Herbsleb, J. D.
(2002). Two case studies Of Open Source Software
development: Apache And Mozilla. ACM Transac-
tions on Software Engineering and Methodology,
11(3), 309–346.

Mohr, L. B. (1971). Organizational technology and
organizational structure. 16, 444–459.

Mohr, L. B. (1982). Explaining Organizational Be-
havior: The Limits and Possibilities of Theory and
Research. San Francisco: Jossey-Bass.

Moon, J. Y., & Sproull, L. (2000). Essence of
distributed work: The case of Linux kernel. First
Monday, 5(11).

Nejmeh, B. A. (1994). Internet: A strategic tool for
the software enterprise. Communications of the ACM,
37(11), 23–27.

O’Leary, M., Orlikowski, W. J., & Yates, J. (2002).
Distributed work over the centuries: Trust and con-
trol in the Hudson’s Bay Company, 1670–1826. In
P. Hinds & S. Kiesler (Eds.), Distributed Work (pp.
27–54). Cambridge, MA: MIT Press.

Orlikowski, W. J. (2002). Knowing in practice: Enact-
ing a collective capability in distributed organizing.
Organization Science, 13(3), 249–273.

Parnas, D. L. (1972). On the criteria to be used in
decomposing systems into modules. Communica-
tions of the ACM, 15(2), 1053–1058.

Pfaff, B. (1998). Society and open source: Why open
source software is better for society than proprietary
closed source software. from http://www.msu.edu/
user/pfaffben/writings/anp/oss-is-better.html

Pfeffer, J. (1978). Organizational Design. Arlington
Heights, IL: Harlan Davidson.

Pfeffer, J., & Salancik, G. R. (1978). The External
Control of Organizations: A Resource Dependency
Perspective. New York: Harper & Row.

Prasad, G. C. (n.d.). A hard look at Linux’s claimed
strengths…. from http://www.osopinion.com/Opin-
ions/GaneshCPrasad/GaneshCPrasad2-2.html

Raymond, E. S. (1998). The cathedral and the bazaar.
First Monday, 3(3).

Robey, D., Khoo, H. M., & Powers, C. (2000). Situ-
ated-learning in cross-functional virtual teams. IEEE
Transactions on Professional Communication(Feb/
Mar), 51–66.

Sabherwal, R., & Robey, D. (1995). Reconciling
variance and process strategies for studying infor-
mation system development. Information Systems
Research, 6(4), 303–327.

Sandusky, R. J., Gasser, L., & Ripoche, G. (2004). Bug
Report Networks: Varieties, Strategies, and Impacts
in an OSS Development Community. Paper presented
at the Proceedings of the ICSE Workshop on Mining
Software Repositories, Edinburgh, Scotland, UK.

Sawyer, S., & Guinan, P. J. (1998). Software devel-
opment: Processes and performance. IBM Systems
Journal, 37(4), 552–568.

Scacchi, W. (1991). The software infrastructure for
a distributed software factory. Software Engineering
Journal, 6(5), 355–369.

Scacchi, W. (2002). Understanding the requirements
for developing Open Source Software systems. IEE
Proceedings Software, 149(1), 24–39.

Scacchi, W. (2005). Socio-technical interaction
networks in Free/Open Source Software develop-
ment processes. In S. T. Acuña & N. Juristo (Eds.),
Software Process Modeling (pp. 1–27). New York:
Springer.

30 Journal of Database Management, 19(2), 1-30, April-June 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Stewart, K. J., & Ammeter, T. (2002). An exploratory
study of factors influencing the level of vitality and
popularity of open source projects. In Proceedings
of the Twenty-Third International Conference on
Information Systems (pp. 853–857).

Taylor, P. (1998, December 2). New IT mantra attracts
a host of devotees. Financial Times, Survey—Indian
Information Technology, p. 1.

Thompson, J. D. (1967). Organizations in Action:
Social Science Bases of Administrative Theory. New
York: McGraw-Hill.

Torvalds, L. (1999). The Linux edge. Communica-
tions of the ACM, 42(4), 38–39.

Valloppillil, V. (1998). Halloween I: Open Source
Software. from http://www.opensource.org/hallow-
een/halloween1.html

Valloppillil, V., & Cohen, J. (1998). Halloween II:
Linux OS Competitive Analysis. from http://www.
opensource.org/halloween/halloween2.html

Victor, B., & Blackburn, R. S. (1987). Interdepen-
dence: An alternative conceptualization. Academy
of Management Review, 12(3), 486–498.

Walz, D. B., Elam, J. J., & Curtis, B. (1993). Inside
a software design team: knowledge acquisition,
sharing, and integration. Communications of the
ACM, 36(10), 63–77.

Watson-Manheim, M. B., Chudoba, K. M., &
Crowston, K. (2002). Discontinuities and continu-
ities: A new way to understand virtual work. Informa-
tion, Technology and People, 15(3), 191–209.

Wayner, P. (2000). Free For All. New York: Harp-
erCollins.

Webb, E., & Weick, K. E. (1979). Unobtrusive
measures in organizational theory: A reminder. Ad-
ministrative Science Quarterly, 24(4), 650–659.

Weber, S. (2004). The Success of Open Source.
Cambridge, MA: Harvard.

Weisband, S. (2002). Maintaining awareness in
distributed team collaboration: Implications for
leadership and performance. In P. Hinds & S. Kiesler
(Eds.), Distributed Work (pp. 311–333). Cambridge,
MA: MIT Press.

Zuboff, S. (1988). In the Age of the Smart Machine.
New York: Basic Books.

ENDNOtE
1 This research was partially supported by US NSF

Grants 03-41475, 04–14468 and 05-27457. An
earlier version of this article was presented at
the First International Workshop on Computer
Supported Activity Coordination (CSAC 2004).
The authors thank previous anonymous review-
ers of the article for their comments that have
helped to improve the article.

Kevin Crowston joined the School of Information Studies at Syracuse University in 1996. He received
his PhD in information technologies from the Sloan School of Management, Massachusetts Institute of
Technology (MIT) in 1991. Before moving to Syracuse he was a founding member of the Collaboratory
for Research on Electronic Work at the University of Michigan and of the Centre for Coordination Science
at MIT. His current research focuses on new ways of organizing made possible by the extensive use of
information technology.

Barbara Scozzi is an assistant professor at the Politecnico of Bari, Italy. She received her PhD in manage-
ment engineering from the University of Rome Tor Vergata/Polytechnic of Bari in 2001. Since 1997 she
has been involved in many research projects at the Politecnico di Bari. Her main research interests are
coordination, knowledge management and innovation in business organizations.

